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Modeling of User Performance with Computer
Access and Augmentative Communication Systems
for Handicapped People

Heidi M. Horstmann and Simon P. Levine
Rehabilitation Engineering Program, Department of Physical Medicine and Rehabilitation, University of Michigan, 1C335 University Hospital,
Ann Arbor, Michigan 48109-0032, USA

The design of the user interface for an augmentative and alternative communication (AAC) or
computer access system is a critical factor in determining a user’s performance with a system. A
comprehensive, quantitative, and accurate model for alternative access systems is needed to
optimize both developers’ design decisions and clinicians’ system recommendations. This paper
presents an application of one possible model, called the GOMS (Goals, Operators, Methods,
Selection Rules) model (Card, Moran, & Newell, 1983). The model provides a comprehensive
description of user behavior based on system-specific parameters as well as the cognitive,
perceptual, and motor capabilities of the user. It can be used to predict both task execution and
learning times, as well as points of excessive long or short term memory load. The GOMS model
is applied here to three interfaces currently used in AAC and computer access systems in order
describe and predict user performance, both qualitatively and quantitatively. The three interfaces
are : (a) row-column letter scanning; (b) row-column letter scanning combined with word prediction
after the first two letter selections only; and (c) row-column letter scanning combined with word
prediction after each letter selection. Techniques for applying the GOMS model are discussed, as
well as the results predicted by the model. Results for the three systems modeled here suggest
the possibility that word prediction interfaces, developed as a faster alternative to row-column
letter scanning, may actually be less efficient than letter scanning.

KEY WORDS: alternative access, computer access, computer access for handicapped people,
user performance modeling

The personal computer has tremendous potential for
improving the functional abilities of individuals with
physical and cognitive disabilities. Some of this potential
has already been realized, and many new educational,
vocational, and recreational opportunities have opened
up for individuals with disabilities through the use of
the computer.

For a computer to be useful to individuals with disa-
bilities, alternatives to the computer’s hardware or soft-
ware must often be developed. For example, a user
who cannot physically use the standard keyboard must
have an alternative means of accessing the computer,
referred to as a computer access system. In addition,
use of the computer as an augmentative and alternative
communication aid for people who cannot speak re-
quires a special user interface design, similar to that of
a computer access system. Throughout this paper,
both types of systems, that is, computer access sys-
tems with and without voice output, will be referred to
as AAC (augmentative and alternative communication)
systems.

The user interface of an AAC system provides the
user with a way to interact with the system, both in

entering new information into the system (user input)
and receiving feedback from the system (system out-
put). The quality of this interaction is a determining
factor in user performance, so the design of the user
interface is critical to the functionality of the system.
Developers who make decisions on system design
should have a consistent, quantitative means of ensur-
ing the quality of their decisions. Similarly, clinicians
who recommend systems for their clients should have
a way to analyze the performance characteristics of an
AAC system and not have to rely exclusively on clinical
experience and short term user trials to make their
recommendation.

For example, consider a system that allows the user
to select text from both letter and word menus, where
the items in the word menu change based on the letters
selected. The questions presented by this system in-
clude: How many words should be in each menu? What
is the effect of increased word list search time? Are
there situations where it is inefficient to use the word
menu? As a second example, considering an encoding
system leads to questions such as: How does learning
time increase as a function of number of encoded
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items? What should be the criteria for a text segment
to justify encoding (e.g., frequency of use, length of the
text segment)?

One way to address these questions is to employ a
mathematical model of an entire AAC system, including
user interactions, hardware, and software. The goal of
such a model is to accurately describe system behavior
and user performance. If the model is accurate, it should
be able to correctly simulate and predict the effect of a
change in system parameters or user characteristics
on performance. An advantage of a modeling approach
is that it is usually much easier to simulate a proposed
change using the model as opposed to determining its
effect through user trials.

Model simulations are used extensively in fields like
aerospace or automobile design, where it may be too
expensive to create a physical prototype to test every
new design concept. Similarly, in AAC and computer
access, accurate and comprehensive modeling tools
are needed, in order to estimate user performance in
terms of both AAC system and user parameters. This
will allow developers to make better design decisions
and clinicians to better understand and predict the
interaction between a user and a proposed system.

This paper explores the use of a modeling technique
to represent user/AAC system behavior in order to
provide both developers and clinicians with a frame-
work that can improve the development and prescrip-
tion of AAC systems. The first part of the paper dis-
cusses the rationale for modeling user behavior with
AAC systems and reviews some of the previous work
in this area. The second part describes the application
of one modeling technique in particular, called the
GOMS (Goals, Operators, Methods, Selection Rules)
model (Card, Moran, & Newell, 1983). The GOMS
model is used to describe user behavior and predict
user performance for three scanning interfaces cur-
rently used in computer access and AAC systems.

The long-term goal of this work is to use the model
to quantitatively predict AAC user/system performance
and simulate a large range of user and system char-
acteristics. This is not an easily achieved goal. How-
ever, the process of mathematically modeling the user/
AAC system behavior offers, at a minimum, a valuable
qualitative analysis, since it provides the opportunity to
carefully analyze the interaction between the user and
an AAC system, under a wide range of conditions.
Therefore, the primary purpose of this initial effort is
not to quantitatively compare the three interfaces cho-
sen, but rather to demonstrate the usefulness of the
GOMS modeling technique in understanding (and ulti-
mately predicting) the effect of AAC system design on
user performance.

Background

There are many AAC systems that are either com-
mercially available or in the final stages of testing, with
more packages being developed each year. These

incorporate a wide range of physical input methods,
such as expanded keyboards, head pointing devices,
and breath-controlled switches. In addition, a variety of
methods designed to enhance rate, such as symbolic
encoding, abbreviation expansion, and word prediction,
can be employed. In one sense, this proliferation of
systems is advantageous, since these systems can
offer individuals with disabilities a level of independence
and achievement that might otherwise be unattainable.

However, there is a disadvantage to the continued
development of additional systems; in the push to
develop prototypes, important design factors may be
ignored. Successful interaction with an AAC system
involves both the physical and mental abilities of the
user. The physical input technique used (e.g., single
switch, expanded keyboard) determines the physical
component of the user’s performance, as measured by
the text entry rate. The mental component of the user’s
performance includes all operations necessary to de-
cide on a physical action, such as searching a word list
for the desired word. Some users may have cognitive
and/or perceptual impairments, which affect this mental
component. These physical and mental factors must
be explicitly addressed by both the designer and the
clinician in order to produce and provide appropriate
AAC systems.

However, specific analyses of these issues are rare,
and those that do exist primarily focus on the physical
efficiency of the system. For example, the number of
switch activations per letter is one of the most common
parameters analyzed (Goodenough-Trepagnier, Rosen,
& Demsetz, 1982; Heckathorne, Voda, & Leibowitz,
1987). Another parameter which has been used for
evaluating word predictive or abbreviation expansion
interfaces is the ratio of the number of characters
selected to the number of characters generated (Swif-
fin, Arnott, Pickering, & Newell, 1987; Vanderheiden &
Kelso, 1987). While physical efficiency is an important
design factor, it should not be separated from the
parallel goal of mental efficiency, that is, minimizing the
cognitive and perceptual load that the system imposes
on the user. Certainly the idea that mental load can
compromise user performance is not new (Soede &
Foulds, 1986). However, these authors do not make
explicit attempts to quantify the effects of mental load.

Other studies have presented models of cognitive
and perceptual load for specific systems (Dabbagh &
Damper, 1985; Gibler & Childress, 1982). Gibler and
Childress (1982) discuss the role of cognitive time as a
component of selection time but do not include it in
their analysis due to the difficulty of measuring it. Dab-
bagh and Damper (1985) discuss the relative mental
and physical components of selection time for their
system but use only a gross empirical measure which
integrates all of these components. There still remains
a substantial need for generally applicable methods
that provide an integrated analysis of the cognitive,
perceptual, and motor aspects of user performance
with AAC systems.
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Methods

Review of GOMS Modeling

The GOMS model is particularly well-suited for mod-
eling the user interface of a computer-based system.
This model has been the focus of a great deal of
research in the field of human-computer interaction and
was chosen for several reasons. First, it is comprehen-
sive, since it is based on a general theory of human
information processing. Second, it provides quantitative
results, which have been verified in several task do-
mains. Finally, it is relatively simple and can therefore
be applied “in the field” by a designer or clinician. It
must be stressed that the validity of the GOMS model
is not being tested by the results presented in this
paper. Rather, we are illustrating the application of a
model that has been validated in the field of computer-
human interaction to the field of AAC.

The GOMS model was developed by Card, Moran,
and Newell (1983), and refined by Polson and Kieras
(1985), among others (Ziegler, Hoppe, & Fahnrich,
1986). The model is based on a general theory of human
information processing, called the Model Human Pro-
cessor. According to this theory, human activity is
governed by three processors in the brain, the Cogni-
tive, Perceptual, and Motor Processors. The Perceptual
Processor takes sensory information and stores it for
use by the Cognitive Processor. The Cognitive Proces-
sor then uses this information, as well as previously
stored information in long-term memory, to decide how
to respond. The role of the Motor Processor is to carry
out the response that has been determined by the
Cognitive Processor. Each of these Processors is char-
acterized by the speed at which it performs its tasks;
this speed is known as the cycle time.

A basic principle of the GOMS model is that within
the context of a structured task, users act predictably
to achieve their goals. The user’s behavior can then be
represented by a sequence of elementary steps (called
Operators) defined by the Goals of the user and the
constraints of the task. These Operators are packaged
into coherent subtasks called Methods, which are anal-
ogous to subroutines in a computer program. Each
Method is specified by a sequence of Operators, each
of which represents some combination of cognitive,
perceptual, or motoric actions by the user. When more
than one Method exists for a given subtask, a construct
called a Selection Rule is used to select one of the
Methods. The final model is a list of statements that
represent the Goals, Methods, Operators, and Selection
Rules to provide a complete model of the user’s behav-
ior in pursuit of the overall goal, specifying each required
step in the proper sequence.

The resulting model of the user’s behavior is useful
in a qualitative sense because it provides a complete
picture of the user’s interaction with the modeled sys-
tem. Because each required user action can be speci-
fied, actions that are potentially difficult, time-consum-
ing, or unnecessary can be identified clearly.

The GOMS model can also be used to make quanti-
tative predictions about a user’s performance with an
AAC system. Several components of user performance,
including task execution time and learning time, as well
as points of excessively long or short-term memory
load, can be predicted in terms of system and user
parameters. These predictions can then be used during
the design process to estimate the consequences of
particular design decisions, or to compare a proposed
design to alternative systems. Several studies, most of
which use text editing as the paradigmatic task, have
demonstrated that the GOMS model provides a good
description of user behavior and predicts task execu-
tion time and learning time with reasonable accuracy
(Card, et al., 1983; Polson & Kieras, 1985; Ziegler, et
al., 1986). The rules for making these predictions are
described below.

Estimation of Task Execution Time. The first step in
predicting overall task execution time is to identify all
possible ways in which the task can be achieved,
represented by paths through the GOMS model. For
example, with some AAC systems, text can be entered
either by selecting individual letters or by selecting
complete words, so there are two paths for the task of
text generation. Each path is defined by statements in
the model that are executed when the user follows the
path. The execution time for a given path can be
estimated by adding up the times required to execute
each individual statement (Card, et al., 1983; Kieras,
1988). The individual statement times are estimated as
follows: one cognitive cycle time per statement, plus
any additional time required for statement execution,
(e.g., key-hit time, visual search time, decision-making
time). The additional statement time components are
estimated by the GOMS analyst. For statements in
which an action of some kind is performed, an Operator
representing the action is defined by the analyst. For
example, if a statement specifies that the user is re-
quired to press a switch, a “switch-hit” Operator can
be defined to represent that user action. These Oper-
ators can be subdivided into Cognitive, Perceptual, and
Motor Processor times to yield an estimate for the
Operator time. For open-ended “mental” Operators,
such as thinking of the next word to be typed, it may
not be possible to accurately subdivide the Operator
into the relative number of Cognitive, Perceptual, and
Motor Processor times. A generic mental Operator time
is used in this case (Card, et al., 1983). The overall task
execution time estimate is the weighted average of
individual path times, based on the probabilities of
individual path execution during general system use. In
the case of the systems modeled here, the individual
paths are the different methods used to select letters
or words, and the overall task execution time is the
text generation rate.

Estimation of Learning Time. An empirical formula is
used to estimate learning time with the GOMS model.
It is the sum of 30 minutes for baseline learning time,
30 seconds for each statement in the model, plus any
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additional memorization time, as described below
(Kieras, 1988). Consistency in the design can reduce
learning time. If two or more statements describe very
similar or identical operations, they need only be
counted once toward estimating learning time. The
rationale behind this is that after learning one of two
similar operations, the second one can be learned in
roughly no time at all (Polson & Kieras, 1985). For
example, if both letter and word selection involve hitting
a switch when the selection is highlighted, then once
the user has learned letter selection, learning word
selection takes essentially no additional time. The final
factor affecting learning time is long-term memory stor-
age. Each piece of information retrieved from long-term
memory must first be memorized by the user. The
required memorization time depends on the number of
“chunks” that are used to store each piece of informa-
tion. A chunk is a set of one or more related items. For
example, the letter “b” out of context takes up 1 chunk,
and the word “cat” also takes up 1 chunk since the
three letters form one coherent concept (Card, et al.,
1983). Kieras (1988) uses 10 seconds/chunk for esti-
mating memorization time. Chunks are summed by
counting one chunk for each pattern in retrieval cue,
one chunk for each pattern in retrieved information, and
one chunk for the association between the retrieval cue
and the information (Kieras, 1988).

Short-Term Memory Storage Requirements. Short-
term memory storage is involved any time there is
information gained in one statement and used in a
subsequent statement. In the systems to be analyzed
here, short-term memory is used to temporarily store
the label and/or location of items to be selected. For
example, if the user wants to select the letter “T”, he/
she must retain that letter in short-term memory for the
duration of scanning until the T can be selected. The
GOMS model analysis provides a means of estimating
the number of information chunks in short-term memory
at any given time as well as the storage time between
retention and retrieval for each chunk. The number of
statements that must be executed between retention
and retrieval yields an estimate of the necessary stor-
age time for that information (Kieras, 1988). This pro-
vides an estimate for the user’s short-term memory
capabilities required for system operation.

Alternative Input Systems Modeled

The GOMS model is used here to explore the per-
formance characteristics of three AAC interfaces, each
of which is designed for use by a user with severe
disabilities who can activate only one or two switches.
Each interface is modeled using the GOMS model, and
the resulting performance predictions are used as a
basis of comparison. Each interface is described below.

The “standard” row-column scanning interface con-
sists of a letter matrix that is scanned automatically to
allow the user to make a selection using a single switch.
The user waits for the system to highlight a particular
row, then hits the switch to select the row. The system
then highlights successive letters in that row, until the

user hits the switch again to select the desired letter.
The letters are arranged in order of overall frequency
of occurrence, as shown in Figure 1, so that the letters
with the highest frequency of use require the fewest
number of scan steps for selection (Foulds, Baletsa, &
Crochetiere, 1975). This arrangement stays fixed,
which simplifies user memorization of letter position.
Text is generated by selecting each letter from the
letter matrix one by one.

The other two interfaces modeled add word predic-
tion to simple letter scanning in an attempt to improve
user performance. These systems exploit the redun-
dancy of the English language in order to predict the
user’s desired word, thereby reducing the number of
physical actions required of the user (Gibler & Childress,
1982). It is assumed that the predictive interfaces use
the same letter matrix arrangement described above.

The first predictive interface studied is a variation on
the PACA system, developed at Northwestern Univer-
sity (Heckathome & Leibowitz, 1985), referred to here
as PACA_2 to distinguish it from the actual PACA
interface. The first two letters of every word are se-
lected using standard single-switch row-column scan-
ning. When the second letter is selected, the letter
matrix is replaced by a list of the seven most likely
words that start with the two selected letters, as well
as a “Next” command at the top of the list. Selections
are made from the prediction list using one-dimensional
single switch scanning. When a word is selected from
the list, the word list is replaced by the letter matrix for
the start of the next word. If the desired word is not in
the first prediction list, the user can select “Next” to
see a second prediction list. A second “Next” selection
brings the letter matrix up again, and the word must be
completed by selecting each of the remaining letters.

The second predictive interface analyzed is a scan-
ning version of the PAL system, developed at the
University of Dundee, Scotland (Arnott, Pickering, Swif-
fin, & Battison, 1984). The major differences between
it and the PACA_2 system are (a) the word list and
letter matrix are on the screen at the same time, and
(b) predictions are made even before a letter is selected
and are refined as subsequent letters are selected.
Before each selection, the 10-word prediction list can

sp E A R D U V

T O I L G K

N S F Y X

H C P J

M W Q

B Z
Figure 1. Arrangement of letters in the standard row-column scan-
ning system. Letters are arranged in order of frequency of occurrence,
with the upper left corner as the most frequently chosen character.
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be searched for the desired word. If it is there, the user
hits a switch to initiate one-dimensional scanning of the
word list. If not, the user hits a second switch to initiate
row-column scanning of the letter matrix.

GOMS Models for the Three Interfaces

A GOMS model was constructed for each of the
three scanning interfaces, following standard GOMS
practice used in the field of human-computer interaction
(Kieras, 1988). Additional details regarding the methods
for modeling the interfaces and the resultant GOMS
models for them are presented in Appendix A. One
outcome of this modeling is a set of equations which
can be used to predict text generation rates for each
interface. These equations are based on a number of
input parameters such as the user’s basic Processor
times (cognitive, perceptual, and motor), system param-
eters (e.g., scan rate, probability of desired word ap-
pearing in a word list, etc.), and Operators specific to
the operation of the modeled system (e.g., switch hit,
search of a word list, etc.). Estimates of learning time
and short term memory load are also produced from
the modeling process.

Model Simulations

Model simulations are performed by varying values
for model input parameters and comparing the resulting
outputs. The first step in comparing predicted text
generation rates is to establish a set of nominal param-
eter values for all of the model input parameters used
in the equations for each system. A list of these input
parameters and the nominal values used in the simu-
lation trials can be found in Appendix B. A rationale for
the nominal values chosen is also presented there. A
brief qualitative description of the model input parame-
ters is provided below.

First, the basic Cognitive, Perceptual, and Motor
Processor cycle times are parameters as defined by
the Model Human Processor discussed above. Second,
system characteristics are represented by four param-
eters: the system scan rate for the average number of
letters/word, the average number of scans required for
a word menu selection, and the probabilities of a word
appearing on a particular word menu. Finally, several
parameters specific to the user are also required. Some
of these represent concrete actions, such as time to hit
a switch or search a word menu. Others represent
decisions that the user must make while using a partic-
ular system, according to the GOMS model constructed
for that system. For example, for the PACA_2 system,
the GOMS model specifies that the user must decide if
the next selection represents one of the first two letters
of a word, in order to choose the correct Method for
item selection. Further detail is supplied in Appendix B.

Results

Task Execution Time

The results of simulation trials to predict overall text
generation rate using the nominal parameter values are
shown in Figure 2. All three predicted rates are slow,

Std. R/C PACA-2 PAL

System Type

Figure 2. Predicted text generation
parameters have nominal values.

rates for each interface. All

with the highest being the standard row-column (or “R/
C”) system at 3.58 words/minute (wpm). For the word
prediction interfaces, the PAL system rate is somewhat
higher at 3.16 wpm than the PACA_2 system at 2.92
wpm.

This simulation trial predicts that the standard R/C
scanning system is faster than the predictive interfaces.
However, the nominal rate estimates are dependent on
several imprecise parameter estimates, particularly in
the predictive interface parameters. The next step,
then, is to determine the sensitivity of the rate prediction
to changes in the nominal parameter estimates.

Dependence on Number of Letters/Word

An increase in the average number of letters/word
will decrease the text generation rate in words/minute
regardless of the system type. Figure 3 shows the
predicted text generation rate for each system plotted
against the number of letters/word (L) when it is varied
from 4.5 to 6 while all other parameters are kept at
nominal values. It can be seen that the standard R/C
system is much more sensitive to changes in L than
either of the predictive interfaces. This is because the
standard R/C system has only one selection path,
single letter selection, so the number of letters/word is
the same as the number of selections executed. With
the predictive interfaces, a change in L affects only
those selection paths in which the final letters of a word
are selected, and this occurs only if the word is not
successfully predicted, or roughly 30% of the time.
Therefore, even though the predicted text generation
rate for the standard R/C system remains higher than
that of the other two systems throughout the range of
L, the difference between the rates for the standard R/
C and word predictive interfaces decreases as L in-
creases.

Dependence on PACA_2 Prediction Parameters

As discussed in Appendix B, the two parameters
specific to the PACA_2 system are w1 and w2, the
probabilities that a word is on the first or second word
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Letters/word

Figure 3. Predicted text generation rates for each interface as a
function of average word length. All other parameters have nominal
values.

lists, respectively, given a chance, p, that the word is
in the dictionary. It is difficult to make confident esti-
mates for system prediction parameters without knowl-
edge of exact dictionary contents. Therefore, it is im-
portant to analyze how sensitive the overall rate predic-
tion is to the values of these parameters. Figure 4
shows the predicted text generation rate for the
PACA_2 system compared to standard R/C scanning,
as w1 is varied from 0.5 to 1.0, with p held at 0.7. Even
with w1 = 1.0, indicating that all words in the dictionary
are presented on the first word list, the PACA_2 rate is
predicted to be over 0.5 wpm slower than that of
standard R/C scanning. In addition, the rate increases
very slowly, from 2.86 wpm to 3.01 wpm over the
range of w1, which demonstrates that the rate equation
is fairly insensitive to the values for w1 and w2. The
effect of varying the proportion of words present in the
dictionary, p, was not studied in these initial simulation
trials.

Dependence on PAL Prediction Parameters

The sensitivity of predicted text generation rate to
changes in two of the PAL prediction parameters was
also studied. The parameters are defined as x1 and x2,
the probabilities of a newly successful word prediction
following selection of the first (x 1) or second (x 2) letters
of the word. Figure 5 shows the predicted text gener-
ation rate for the PAL system compared to standard
R/C scanning, as the prediction parameters are varied
together, with x1 = x2 over the range of 0.25 to 0.40.
This range was chosen because the parameters must
be at least as large as the nominal estimate for x0 (the
probability of word prediction before any letters have
been selected), while allowing x3 (the probability of word
prediction after the third letter selection) to remain
positive (see Appendix B). The graph shows an esti-
mated rate increase of 0.09 wpm for each increase of
0.05 in the prediction probabilities, with a maximum
rate of 3.22 wpm at x1 = x2 = 0.40. This maximum rate
is still 0.36 wpm below the estimated rate for standard
R/C scanning.

Learning Time Requirements

Standard R/C Scanning. The GOMS model for the
standard row-column scanning interface contains only
seven statements, each of which takes an estimated
30 seconds to learn. Therefore, the base learning time
can be estimated as: 30 min. + (30 sec) (7 statements)
= 33.5 min. There are no consistency gains, but long-
term memory storage time must be included. The user
must memorize the location of all 27 characters in the
letter selection menu in order to avoid excessive visual
search time. The retrieval cue for this storage consists
of “location-of letter-name,” which takes two chunks.
The retrieved information is a (row, column) coordinate,
which also takes two chunks. Adding the association

W1, P(word in 1st list in dict.)

Figure 4. Predicted text generation rate for the PACA_2 interface
as a function of w1, the probability of a word appearing on the first
word list, given that it is in the dictionary. The probability of a word
being in the dictionary is fixed at 0.70, and all other parameters have
nominal values. Predicted text generation rate for the standard row-
column scanning interface is also shown for comparison.

x1, P(word pred. after 1st letter)

Figure 5. Predicted text generation rate for the PAL interface as a
function of x1 and x2, the probabilities of successful word prediction
following the first and second letter selections, respectively; x1 and
x2 are varied together, with x1 = x2. The probability of a word being
in the dictionary is fixed at 0.75, and all other parameters have
nominal values. Predicted text generation rate for the standard row-
column scanning interface is also shown for comparison.
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chunk, five chunks are required for each letter location.
At 10 set/chunk, the total time required to memorize
the 27 letter locations can be estimated at 1350 sec-
onds. The overall learning estimate, then, is: 33.5 min.
+ 1350 sec. = 56 min.

The PACA_2 System. The GOMS model for the
PACA_2 system contains 29 statements, each of which
takes an estimated 30 seconds to learn. Therefore, the
base learning time can be estimated as: 30 min. + (30
set) (29 statements) = 44.5 min. Small learning transfer
gains exist, which can be subtracted from the base
learning time. The Methods for choosing a letter and
choosing a word are essentially the same. Therefore,
the three statements in the word selection Method can
be subtracted from the total number of statements,
yielding a learning time savings of 90 seconds.

To complete the learning time estimate, long-term
memory storage time must be included. Memorization
of the letter matrix adds 1350 seconds to the estimated
learning time. The user must also memorize the name
of the command for moving to the next word list and
its location in the selection menus. The time required
to memorize these eight chunks of information can be
estimated at 80 seconds. The overall learning time is
then: 44.5 min. – 90 sec. + 1430 sec. = 66.8 min.

The PAL System. The GOMS model for the PAL
system contains 33 statements, each of which takes
an estimated 30 seconds to learn. Therefore, the base
learning time can be estimated as: 30 min. + (30 sec)
(33 statements) = 46.5 min. Small learning transfer
gains exist because the Methods for choosing letters
and words are very similar, so two statements can be
eliminated from the learning time calculation. Additional
long-term memorization time is required only for the 27
character locations, which adds 1350 seconds to the
total learning time. The total estimated learning time is
therefore 68 minutes.

Figure 6 shows the overall estimated learning time
for all three systems, with the relative contribution of

Std. R/C PACA_2

System Type

PAL

Figure 6. Predicted learning times for each interface. The three
components of learning time are shown: base learning time, task
steps, and long-term memory time.

each component: base learning time, time to learn task
steps, and long-term memory time. The base learning
time for each system is 30 minutes, as discussed
above. The long-term memorization times for each
system are also basically the same. The major com-
ponent of long-term memory time is the memorization
of the 27 letter matrix positions which takes 22.5
minutes. The standard row-column scanning interface
has the shortest task step learning time, due to the
small number of statements in its GOMS model; it is
therefore predicted to have the shortest overall learning
time.

Short- Term Memory Requirements

None of the systems modeled here places excess
demands on short-term memory capacity or retention
time. The largest amount of storage required at any
one time is three chunks, which is safely below the five-
chunk limit suggested by Kieras (1988) and all required
retention times are less than 1 second.

Discussion

The specific GOMS models used in these simulation
trials have not been validated by comparison of pre-
dicted results with actual user trials. Thus, the quanti-
tative results obtained must be considered as prelimi-
nary. Nonetheless, there are several reasons to seri-
ously consider these preliminary results. First, the
GOMS modeling method has been validated for very
similar applications (e.g., text editing). Second, detailed
task analysis provided through GOMS modeling pro-
vides a good qualitative rationale for the results ob-
tained. Finally, similar modeling approaches were used
for all three AAC systems studied, which suggests that
the quantitative results may have validity for relative, if
not absolute, comparisons. With these considerations
in mind, the following discussion of the results is pre-
sented.

Task Execution Time

Task execution time refers to the time it takes to
perform the overall task. In the case of an AAC or
computer access system, the overall task is to generate
text to be spoken in a conversation, printed, or used
as input to an application program. The ideal case is
for the disabled user to approach rates achieved by
able-bodied individuals, typically 35 to 40 wpm for
typing and 100 to 200 wpm for speaking. These are
unrealistic for a single or dual switch scanning system.
The minimum acceptable rate should be above 3 wpm
because at rates below this point, conversation breaks
down due primarily to the receiver’s impatience (Good-
enough-Trepagnier, Galdieri, Rosen, & Baker, 1984).
Goodenough-Trepagnier et al. (1984) have shown that
receivers’ impatience decreases markedly at a rate of
5 wpm, which makes this rate a reasonable target for
a minimally acceptable rate. The preceding GOMS
analysis provides estimates of task execution time for
each system under a variety of conditions. The surpris-
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ing overall result of this analysis is that none of the
three interfaces approaches 5 wpm using nominal pa-
rameter values, even though user parameters corre-
spond to those of an able-bodied user. In addition, the
two predictive interfaces are at a consistently slower
rate than the standard R/C system, with the PAL
system somewhat faster than PACA_2, under almost
all conditions.

There are several factors that contribute to the pre-
dicted slowness of the PACA_2 and PAL predictive
interfaces. First, the number of statements to be exe-
cuted in use of the predictive interfaces is much greater
than the mere seven statements used in the standard
R/C system; this reflects the relative complexity of the
predictive systems. Second, use of the predictive sys-
tems requires additional mental Operators, such as
visual search time and word-found matching, which
increase the overall text generation rate. Third, the
degree of word prediction success, which is limited by
the size of the dictionary, also affects the estimated
rate for the PACA_2 and PAL systems. An overall word
prediction success of 70 to 75% may not provide
enough word selection opportunities to counteract the
mental overhead involved in using the more compli-
cated predictive interfaces. In addition, when a word is
selected, the length of the average word is too short to
provide sufficient keystroke savings.

The proportion of words present in the dictionary is
crucial to text generation speed. It should be noted that
a major feature of both the PACA_2 and PAL systems
is that the dictionary contents change dynamically
based on the user’s word usage. This feature may
significantly increase the proportion of words present
in the dictionary over time with a resulting increase in
text generation rate. This is a user-specific system
feature which cannot be easily modeled with the GOMS
model. However, the GOMS model can be used to
develop criteria for the proportion of words needed to
be found in the dictionary in order to achieve a prede-
fined performance level.

Finally, certain characteristics of the GOMS model
itself may affect the predictions. The GOMS model as
applied here is a serial model; it assumes that steps
are executed in series rather than simultaneously. This
restriction may lower the predicted task execution
times, since in reality, the user may be able to execute
two or more steps at once. For example, a user may
be able to perform a cognitive activity, like placing the
next pending selection in short-term memory, while
completing a motoric activity, like hitting the selection
switch. Recent enhancements to the GOMS model
have made it possible to model such overlapping proc-
esses and may lead to more refined predictions of
performance time (John, 1988).

In addition, the GOMS models used here do not
account for errors in task execution, which certainly
affect task execution times. The model can be used,
however, to analyze methods for error recovery, in
order to predict which Methods are most efficient when
errors do occur.

Learning

System learning time should be as short as possible,
since systems that are difficult to learn will be less
acceptable to the target user. Rubinstein and Hersh
(1984) propose a “10 minute rule” as a criteria for
learning the basics of a system. This may be impossible
to achieve as some published estimators of learning
time use a base learning time of at least 30 minutes
(Kieras, 1988; Polson & Kieras, 1985). A more reason-
able goal for learning time may be 10 minutes in addition
to base learning time, for a total of 40 minutes.

None of the estimates for the three modeled inter-
faces meets this threshold of 40 minutes. Note, how-
ever, that the estimated learning times include 22.5
minutes for memorization of the 27 letter matrix posi-
tions. Memorization of these positions is not essential
for use of any system. Therefore, the time required for
this memorization can be subtracted from the estimated
learning time to give an minimum learning time estimate.
When this is done, the learning time prediction for
standard R/C system is well under the 40-minute
threshold, and those for the two predictive interfaces
are only a few minutes greater than 40 minutes.

The accuracy of estimating absolute learning time
with the GOMS model has not been well validated in
previous studies. Therefore, it may be more prudent to
view the current learning time estimates as providing
comparisons between systems, rather than absolute
learning time predictions. When this is done, the results
are as expected; the standard row-column scanning
interface is predicted to have shorter learning time than
the more complicated word prediction interfaces.

Conclusion

This research represents an initial stage in the de-
velopment of a model that has the potential to become
an extremely important tool in the design and prescrip-
tion of computer access and communication aids for
people with disabilities. The results presented here
raise the question as to whether word prediction inter-
faces, developed as a faster alternative to row-column
letter scanning, are actually less efficient than the letter-
only interface. The model also provides insight into
possible reasons for this surprising result.

The quantitative validity of these results is dependent
upon the accuracy of the GOMS model descriptions
and input parameters. Therefore, one direction for fu-
ture research is to study the behavior of actual users
to determine the validity of the GOMS model predic-
tions. It may be that the current GOMS models do not
provide accurate quantitative predictions in an absolute
sense, given the limitations of the models discussed
above. However, these limitations may not prevent the
model from making accurate predictions of the relative
performances among different interfaces or techniques.
Indeed, if previous validation of the GOMS approach
for analysis of text editing is assumed to carry over to
the present application, then further sensitivity analysis
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of input parameters can be expected to yield at the
very least qualitative information about the value of one
approach over another. Modeling an entire system is a
time consuming task. However, by modeling various
paradigms common to many different systems, criteria
can be developed for system optimization, (e.g., deter-
mine the number of items to be presented in a menu or
the efficacy of a linear vs. binary search strategy). The
previous discussion on percentage of words to be
found in a dictionary is a good example for potential
application of this model.

It should be noted that optimizing task execution
time, learning time, and short-term memory load of a
system does not necessarily guarantee user accept-
ance. For example, some users may prefer word pre-
diction systems simply because it helps their spelling.
This may actually improve their performance over sim-
ple letter scanning because it reduces their error rate.
Or they may perceive their performance to be better
because they are less concerned with making errors.
Finally, word completion may significantly enhance the
quality of output for a semiliterate user, even if sheer
number of letters/min is lower than single letter scan-
ning. This example provides an important reminder of
model limitations and the need to integrate use of the
model with clinical skill.

Modeling of computer access and AAC systems has
many potential benefits. With the proper model, a de-
veloper or clinician can create a qualitative analysis that
provides an illuminating picture of a user’s interaction
with the system, and the possibility even exists for the
creation of accurate quantitative descriptions. The
GOMS model appears to be particularly well suited to
this challenge, because it offers a comprehensive treat-
ment of the cognitive, perceptual, and motor aspects
of system use and provides both qualitative and quan-
titative levels of analysis.
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APPENDIX A

GOMS MODELS FOR THE THREE INTERFACES

Techniques for generating performance prediction equations using
the GOMS model are described below for each interface. The case
of standard row-column scanning is discussed in detail; similar prin-
ciples apply to the other two interfaces.

Standard Row-Column Scanning. The GOMS model that was
constructed for the standard row-column scanning interface contains
seven statements, as shown below. The statements are written in a
formal GOMS modeling language called NGOMSL. The complete
methodology is described elsewhere (Kieras, 1988) but a general
explanation is provided below. Each statement corresponds to either
a Goal, Operator, Method, or Selection Rule. For example, statement
(1.2) states that the subgoal of choosing an individual letter must be
accomplished in order to achieve the overall Goal of entering a body
of text. To initiate the subgoal, statement (1.2) transfers control to
statement (2.1) which defines the Method required for achieving the
letter choosing subgoal. Each statement in the letter choosing Method
is executed in sequence until the Method has been completed, at
which time statement (2.3) reports success, and control is returned
to statement (1.3). The user must then decide whether to continue
the process, based on whether all letters in the desired text have
been selected.

It should be noted that statement (2.2), the row-column scan
Operator, can itself be broken down into a number of component
steps, such as visual search and switch hit. Clearly, an understanding
of the component steps is necessary, and some analysts may choose
to include them explicitly in the GOMS model. However, in this case,
a parametric description of row-column scanning in terms of its
component steps had previously been developed, using GOMS tech-
niques (Horstmann, 1987). Therefore, we have chosen to use the
results of that work to simplify our current GOMS model.

(1.1 ) Method to accomplish Goal of entering text
(1.2) Step 1. Accomplish Goal of choosing a letter
(1.3) Step 2. Operator to Decide: if text-complete, then report

Goal accomplished.
(1.4) Go to Step 1.
(2.1) Method to accomplish Goal of choosing letter
(2.2) Step 1. Operator for row-column scan to select letter
(2.3) Step 2. Report Goal accomplished.

The only possible selection path using this interface is a single letter
selection from a static two-dimensional letter matrix. All seven GOMS
statements are executed in this path, which requires one cognitive
cycle (  ) for each statement, with additional time for one mental
Operator (t 1), representing statement (1.3) and the letter selection
Operator (t 2), representing statement (2.2). For a word of length L,
therefore, the estimated performance time for this interface is: T =
(L)(7  + t1 + t2).

The time for the mental Operator, t1, represents the time to decide
whether or not to continue with text generation. It is not easily
subdivided into its component steps. The time for the letter selection
Operator, t2, represents the additional time required to do a single
row-column selection: t2 = (d)(s) + 2h, where: s = system scan rate
(i.e., speed at which selection options are presented); d = average
number of scan steps required to select an individual letter; h =
switch hit time (i.e., how fast the user can hit the switch), with two
switch hits required in row-column scanning. The variable d can be
determined by knowing the position of each letter in the matrix and
the probabilities of selecting each letter. The value of d is 2.245 with
the frequency-ordered letter matrix used. This equation does not
include visual search time, because if it is assumed that the letter
matrix is well-learned and the scan rate is set appropriately, visual

search can be done during the scan delay, so it does not require any
additional time (Horstmann, 1987).

The PACA_2 System. The GOMS model for the PACA_2 system
contains 29 statements. There are four possible paths through the
PACA_2 system model:

1. Single letter selection without a search of word prediction lists.
2. Single letter selection following an unsuccessful search of both

prediction lists.
3. Word selection when word is found in first prediction list.
4. Word selection when word is found in second prediction list.

For every word, the first two letters must be selected, so path No. 1
is executed twice per word. The time required to complete the word
depends on the prediction algorithm, which determines the relative
frequencies of each of the remaining paths. Therefore, the average
time, T, required to generate a word of length L can be expressed
as:

where: Ti = time required to execute the ith path; p = probability that
word is in the dictionary; w1 = probability that word is on 1st prediction
list, given that it is in the dictionary; w2 = probability that word is on
2nd prediction list, given that it is in the dictionary.

Using the GOMS model, expressions for the Ti terms can be
formed. For path No. 1 (letter selection without word search), 14
GOMS statements are executed, plus time for three mental Operators
and one letter selection Operator. Therefore, the estimated time for
path No. 1 is: T1 = (14)(   ) + t1 + t2 + t3 + t4.

Similarly, the estimated execution times for the remaining paths
are:

where: t1 = time to decide if current selection is the first or second
letter in the word; t2 = time to determine if a letter or a word is going
to be selected; t3 = time to select from letter menu; t4 = time to
decide if all desired text has been entered; t5 = time to search word
menu; t6 = time to select ‘Next” from word menu; t7, = time to decide
if target word was found; t8 = time to decide if more word lists remain
to be searched; t9 = time to select from word menu.

The PAL System. With the PAL system, if the user searches the
prediction list after every letter selection, there are only two possible
selection paths, as follows:

1. Letter selection after deciding that the desired word is not in
the prediction list. (T1)

2. Word selection when the desired word is found in the prediction
list. (T2)

However, if the word is not present in the prediction list after the third
letter selection, it is almost certainly not going to appear in subsequent
lists, particularly with a dictionary of only 1000 words (Jones &
Wepman, 1966). Therefore, it is assumed that the user does not
search the prediction lists that appear following the fourth and sub-
sequent letter selections. When selecting the fifth through last letters
in the word, the user simply selects letters without searching the
prediction list. This is shown below as T3.

The number of times that each of these paths are executed per
word depends completely on the characteristics of the prediction
algorithm. Representing the prediction parameters is much more
complex than the PACA_2 system because the prediction list is
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searched before each selection, rather than only after the second These can be expressed as follows:
letter as in the PACA_2 system. If x1 is the probability of successful
word prediction following selection of the ith letter, the average time
required to select a word of length L is:

where: h = time to hit the switch for scan initiation; t1 = time to
decide if current selection is at least fourth letter of word; t2 = time
to search word menu; t3 = time to decide if word was found; t4 =
time to decide if selection is a letter or word; t5 = time to select from
letter menu; t6 = time to decide if all desired text has been entered;

Using the GOMS model, expressions for the Ti terms can be formed. t7 = time to select from word menu.

APPENDIX B

MODEL INPUT PARAMETERS FOR MODEL SIMULATION

The process of choosing values for the
detailed below. These parameters are:

Basic Processor Times

l cognitive cycle time
l perceptual cycle time
l motor cycle time

System Parameters

l system scan rate
l average number of letters/word
l average number of scans/word selection
l prediction success parameters

model input parameters is

Operators

l switch hit
l word found
l selection is letter or word
l 1st or 2nd letter of word
l at least 4th letter of word
l search list for word
l decide if text is complete

Values for the Cognitive, Perceptual, and Motor Processor cycle
times (  and    are taken from basic human information proc-
essing research (Card, Moran, & Newell, 1983). All three values can
be estimated at 0.1 seconds for people without cognitive, perceptual,
or motor impairments. These values were used for initial simulation
trials as they also represent a wide range of users with disabilities
whose cognitive, perceptual, and motor times are identical to able-
bodied individuals, when using a one or two-switch scanning inter-
face.

All except one of the mental Operator times are estimated by
determining the relative number of component Processor times. For
example, the time required to determine if the current selection is the
first or second letter of the word can be decomposed into the
following Cognitive Processor steps. First, place pending selection in
short term memory. Then match it against first letter of word, then
against the second letter of the word. These three steps take three
Cognitive Processor cycles, or 0.3 seconds.

The text-complete Operator is one that cannot be readily subdi-
vided into component Processor cycles. Therefore, a value of 1.35
seconds was used, taken from Card, Moran, and Newell’s study
(1983) of the generic “mental” Operator, M. This estimate is used for
lack of a more refined estimate.

Time required to hit the switch can be modeled as a simple reaction
time once the desired highlighted letter has been perceived. This
reaction time takes one cognitive cycle and one motor cycle, or 0.2
second. The minimum scan rate can be set at the time it takes to
perceive a letter on the display and match it to an image of the

desired letter, plus the switch hit time. This is the sum of       and
0.2 or 0.4 seconds.

There have been many studies to determine the average number
of letters per word in samples of the English language. Two values
that are frequently cited are 5 letters/word (Goodenough-Trepagnier
et al., 1982) and 5.7 letters/word (Kucera & Francis, 1967). Five
letters/word was chosen as the nominal estimate for simulation trials.

An accurate estimate of the number of scan steps per word
selection cannot be made without explicit knowledge of the content
of each prediction list and the frequency distribution of selections
from each prediction list. For a frequency arranged list, the true
number would be something less than one-half the number of words
in the prediction list. A high estimate of one-half the number of words
in the prediction list is used as the nominal parameter.

Similarly, precise values for the all prediction success parameters
cannot be obtained without exact knowledge of the dictionary con-
tents. For the PACA_2 system, the developers report a 0.70 proba-
bility of a word being present in the dictionary, but they don’t specify
the frequency distribution between first word list as compared to the
second (Gibler & Childress, 1982). Since the word lists are frequency-
arranged, it can be assumed that the probability of a dictionary word
appearing on the first list, w1, is greater than the probability of a word
appearing on the second list, w2. Therefore, nominal estimates of
0.70 and 0.30 were used for w1 and w2, respectively.

The estimation process for the PAL system is more complicated.
Again, the developers provide a value of 0.75 for the probability, p,
of a word being present in the dictionary, but the probabilities of a
word appearing in the list after the ith letter selection are not given
(Arnott et al., 1984). Therefore, two assumptions based on word
frequency studies were used to estimate these probabilities. First,
the probability of a new word appearing in the word list after the
fourth letter selection was assumed to be zero. This means that the
only required estimates are for x0 through x3. In addition, the relation-
ship between the Xi’s and p means x3 is uniquely specified, given p,
x0, x1, and x2. The second assumption is that the words in the list
before any letters have been selected are the 10 most frequently
used words in the English language. According to Kucera and Francis
(1967), these words are used 25% of the time, which yields an
estimate of 0.25 for x0.

The only remaining estimates needed are for x1 and x2, the prob
abilities of a new word appearing in the prediction list after the first
and second letter selections. One constraint is that x2 x1     x0, since
the predictions are refined after every letter selection. The only other
constraint is that x3 > 0. In a dictionary of 1000 words, adding a third
letter to the word does not substantially improve the chance of a
successful word prediction (Jones & Wepman, 1966). So, the nominal
estimates used for the PAL system prediction parameters, x0, x1, x2,
and x3 were 0.25, 0.35, 0.40, and 0.15, respectively.




