
- - 
-I. _ 

0743-4618197 1304-0239 $3 0010 Vol t~ r r i~  13 P---- 
AAC Augmentative and Allernatwe Cornnu~n*~= 
Copyrtpht 0 1997 by ISAAC 

Keystroke-Level Models for User Performance with 
Word Prediction 
Heidi Horstmann Koester and Simon p. Levine 
Koester Pedormance Research. Holland. Mich~gan. USA ( H H K . )  and Rehabilitation Eng~neering Program uraouarc uioengineedng Program. 
Department of Physical Medicine and Rehabilitation. University of Michigan. Ann Arbor, Michigan. USA (S.P.L.) 

Two modeling Studies have been performed to develop quantitative models of user perfor- 
manee with word prediction and test their predictions against empirical data. In the first study, 
the model structure represented performance as a linear combination of two user parameters, 
keypress and list search time. Two types of simulations were performed using this structure: 
Model 1 A, In which user parameter values were deterrnlned Independently, and Model 16, which 
used parameter values derived from subjects' data. Model simulations of overall session per- 
formance, word entry times, and item selection times were compared to actual performance of 
able-bodied and spinal cord injured subjects transcribing text with and without word prediction 
over the course of seven test sessions. The average errors for Models 1A and 1B in modeling 
subjects' ward entry times were 27% and 16%, respectively. The second study used a revised 
model for list search time in an attempt to improve model accuracy and increase understand- 
ing of the list search process. The model revision led to only a small improvement In accuraGy 
but did provide Insight into how list search time depends on the context of the search. The 
results point out the need to understand a user's characterlstlcs before applying a model, but 
they are an encouraging demonstration of the ability of analytical models to represent user per- 
formance with word prediction. 
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There is a strong need for greater understanding of 
user performance with augmentative and alternative 
communication (AAC) systems. Progress toward this 
understanding can be made through empirical studies 
of actual user performance under a range of conditions. 
However, given the impossibility of measuring petfor- 
rnance under all conditions of interest, an important 
complement to empirical studies is the creation and val- 
idation of analytical models of user performance. 

This paper focuses on ward prediction systems and 
addresses the question of whether analytical models 
of user performance can be developed that ac~urately 
represent the performance of actual users 
(Horstmann & Levine, 1992; Newell, Arnott, & Waller, 
1992). Three model implementations were developed. 
Models 14 and 10 shared a structure that represented 
Performance as a linear combination of two user para- 
meters, keypress and list search time, while Model 2 
used a revised model far list search time. For Model 
'Al user parameter values were determined inde= 
Pendently, while Models 18 and 2 used parameter 
Values derived from subjects' data. Each was tested 
against actual performance in a range of Wer imel-  

tal conditions to determine which one yields better 
accuracy and how consistent accuracy is across dif- 
ferent users and usage conditions. The short-term 
goal is an accurate model that will support sirnula- 
tions of user performance with word prediction sys- 
tems and provide insight into the conditions under 
which word prediction does and does not lead to 
improved performance. The longer-term goal is to 
progress toward establishing modeling techniques 
that can be used to analyze and optimize a wide range 
of current AAC systems and the design of future sys- 
tems for a particular user or user population. 

BACKGROUND 

Approaches to Madeling 6f AAC Systems 

Quantitative models can be used to simulate and 
predict performance for different system and user 
characteristics, which makes them a potentially pow- 
erful tool for clinicians and designers. A number of 
researchers have recognized the signifi~ant potential 
benefits of the modeling approach. and several auan- 
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titative models of AAC systems have been developed 
as a result. Most of these evaluate systems based pri- 
marily on motor efficiency (Baker & Barry, 1990; 
Damper, 1984; Goodenough-Trepagnier & Rosen. 
1988: Pollak, 1982; Pollak & Gallagher, 1989; Van- 
derheiden, 1988), so they are not well suited to rep- 
resent systems like word prediction, in which cognition 
and perception have an important impact. The avail- 
able validation data suggest that models that focus 
only on motor efficiency may make accurate quanti- 
tative predictions for simple letter-based systems 
(Damper, 1984), but they may seriously overestimate 
achievable speed when applied to more complex sys- 
tems (Goodenough-Trepagnier et al.. 1987; Goode- 
nough-Trepagnier & Rosen, 1988). 

The need to consider cognitive and perceptual 
abilities in models of user-system interaction is 
well recognized (Dabbagh & Damper, 1985; Gibler 
& Childress, 1982; Horstmann & Levine. 1990; 
Vanderheiden, 1988), but there are still shortcomings 
in current approaches. Gibler and Childress (1 982) 
produced the most comprehensive attempt when they 
decomposed the user's selection time for their scan- 
ning word prediction system into several components. 
These were the visual search time (for word lists and 
letter matrices), cognitive time delay (to make deci- 
sions based on visual search or decide on the next 
word to type), and movement time (for the sequence 
of switch hits required to make a selection). Cognitive 
time was subsequently ignored, but visual search time 
and movement time for a given selection were mod- 
eled as linear functions of that selection's position. 
The resulting rate calculations were accurate to within 
7% for the three able-bodied (AB) subjects tested. 
Model accuracy results were not reported for the sin- 
gle disabled subject tested. A parametric analysis pre- 
dicted that a dictionary of 1000 words would result in 
poorer performance than a dictionary of 500 words 
because the increase in visual search and scanning 
times for longer word lists would offset the improve- 
ment in word prediction success. The validity of this 
prediction was not tested against empirical data. 

The research reviewed above demonstrates the 
potential power of the modeling approach to address 
the numerous trade-off issues that face the AAC 
developer and clinician. However, two major gaps 
remain. First, very little work has been done to empu- 
ically test the predictions of the models, particularly 
with users who have disabilities. Although two studies 
suggest a high degree of model accuracy for a small 
number of A 6  subjects (Damper, 1984; Gibler & Chil- 
dress, 1982), neither addresses how accuracy is 
affected by different system configurations, user char- 
acteristics, or model implementations, which are crit- 
ical issues in gauging the usefulness of any model. 
Second, most models struggle with how to represent 
cognitive and perceptual time and simply include 
these times with the time for physical action. This 
study addresses these gaps by combining previous 

AAC modeling work with modeling techniques devel- 
oped and validated in the field of human-computer 
interaction. The fundamental techniques employed 
are reviewed below. -.\,F '% *:@ ,t> . . - - 

Techniques f o r  ModelingA' ' 4 
numan-Computer Interaction 

The models developed in this work are based on 
the Keystroke-Level Model, a technique that origi- 
nated in the field of human-computer interaction 
(Card, Moran, & Newell, 1983; Olson & Nilsen, 1988). 
This technique provides a means of identifying the 
component actions that a user must perform for a par- 
ticular task. The time required for executing that task 
is then predicted by summing the times for each com- 
ponent action. In the case of text entry with a word 
prediction system, the unit task is the entry of a sin- 
gle word, accomplished through a series of letter and 
word list selections, each of which involves cognitive. 
perceptual, and motor component actions. 

Within the Keystroke-Level Model technique, there 
are a variety of specific implementation methods. 
"Keystroke level" means that the model represents 
events in the range of 100 milliseconds to a few sec- 
onds. The way in which the unit task is broken down 
into these short-duration component actions is the 
model structure. Each model structure yields a para- 
metric equation for task performance time. A second 
dimension on which models can vary is the source of 
user parameter values. lndependent simulations use 
parameters drawn from independent sources, such 
as previous human performance studies, while data- 
driven simulations employ parameters derived directly 
from subjects' own performance data. 

lndependent simulations are easier to apply and 
potentially more generalizable than data-driven simu- 
lations, but they are typically less accurate. For tasks 
involved in text editing and spreadsheet use, errors 
reported for models with independent structure and 
parameters average 52.2%, with a range of 24% to 
137% (Card et al., 1983; Gong, 1993; John, 1988; 
Olson & Nilsen, 1988). For models whose structure 
andlor parameters have been derived from subject 
data, the average error is 16.60h, with a range of 4% 
to 33% (Card et al., 1983; Gong, 1993; John, 1988; 
Olson & Nilsen, 1988). 

. - I  - 
SPECIFIC AIMS ' * - 

Two modeling studies were performed to evaluate 
keystroke-level modeling of performance with a word 
prediction system. Four specific aims were addressed: 

1. Determine the accuracy of a priori model predic- 
tions, made before data are collected and subject _ 
parameters are measured; 

2. Assess the model's ability to account for perfor- 
mance under different usage conditions, including 
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different user strategies, user characteristics, and 
task configurations: 

3. Compare the accuracy of model predictions for 
users with and without physical disabilities: and 

4. Determine the relative accuracy of three different 
model implementations. 

The first study tested a relatively simple model struc- 
ture, while the second study revised that structure in 
an attempt to improve model accuracy. The methods 
and results for each study are described separately 
below, followed by an overall discussion. 

MODELING STUDY #1: METHODS 

The first modeling study tested the accuracy of Model 
1 A, in which structure and parameter values were inde- 
pendent of validation data, and Model 18, which had the 
same structure as Model 1A but employed user para- 
meters derived from validation data. 

Empirical Data for Model Validation 

Methods used to gather the empirical data for 
n-~odel validation are described briefly below, More 
detailed methods, as well as a report on the empirical 
results of the study, have been presented elsewhere 
(Koester & Levine, 1994, 1996). 

Fourteen subjects transcribed text both with and 
without a word prediction feature f ~ r  Seven test ses- 
sions. Eight subjects were A 6  and used mouthstick 
typing, while six subjects had high-level spinal cord 
injuries (SCls) and used their usual method of key- 
board access.' Each subject was assigned to use one 
of two word prediction strategies to provide a basis for 
model structure and reflect a clinical situation in which 
a user may be given guidelines for when to search the 
list. The rule for Strategy 1 was t~ search the list 
before every selection. The rule for Strategy 2 was to 
choose the first two letters of a word without search- 
ing the list, then search the list before each subse- 
quent selection, The between-subjects factors of pres- 
encelabsence of SCI (SCI or AB) and search strategy 
( I  or 2) were combined to form four subject groups: 
SCI1, SC12, ABI ,  and A82. 

The two interfaces were developed by the investi- 
gators specifically for this project to provide sufficient 
control over the system configuration as well as the 
means of data collection. The "letters-only" system 
involved letter-by-letter spelling on a standard com- 
puter keyboard, and the "letters + word prediction 
(WP)" system used single-letter entry augmented by 
a word prediction feature. A six-word prediction list 
with a fixed word order wa's used and presented ver- 
tically in the top left corner of the screen. A fixed set 

'Two subjects with SCI used mouthstick typing and four used 
hand splint typina. 

of SIX words was displayed before the first letter of a 
word was entered, with subsequent predictions based 
on the letters entered by the user. 

Text transcription blocks were presented visually, 
Sentence by sentence. The keystroke savings pro- 
vided by word prediction was fixed across Sessions 1 
to 4.  at a level corresponding to an "average" word 
prediction system (Higginbotham, 1992). Keystroke 
savings was varied across Sessions 5 to 7, with Ses- 
sion 5 at a higher level and Sessions 6 and 7 provid- 
ing successively poorer-than-average levels. 

The following dependent measures for model vali- 
dation were recorded in each test session: text gen- 
eration rates with and without word prediction, the 
percent improvement in text generation rate with word 
prediction relative to letters-only typing, and the times 
to enter each individual word and item (i.e., single let- 
ters or word list selections) during word prediction 
use. Data were collected in real time as subjects tran- 
scribed their sentences. Errors, words not entered 
according to the assigned strategy, and pauses due 
to the subject referring back to the text card during 
transcription were all removed from the data before 
comparison with model predictions (Koester & Levine, 
1 996). 

The rationale for measuring performance at three 
levels-across an entire session, for each individual 
word, and for each specific item selected-was to 
examine model accuracy in successively finer detail. 
Each level has a specific role to play in understand- 
ing the theoretical accuracy and practical relevance of 
the model. Session-level simulations are of interest 
because overall session performance is the most clin- 
ically relevant measure. However, in summing the 
times for individual component actions over an entire 
session, the model may capitalize on the cancellation 
of positive and negative errors, leading to an overly 
optimistic estimate of model error. Analysis at the 
word level was therefore performed to reduce the 
effect of fortuitous error cancellation, while maintain- 
ing some clinical relevance. Analysis at the item 
selection level provides the strictest test of model 
accuracy because error cancellation cannot Occur at 
that level of detail. From a clinical ,standpoint, high 
accuracy in modeling individual item selections is not 
necessary but would certainly be encouraging. 

Equations for Model 1 . ,". :,. - - 7 

,> ..A .- - L k -. * < 
Item Selection Times 

The first step in modeling item selection time was to 
determine the user actions most important to use of 
the Letters + WP system. This was done by analyzing 
the task of entering words for each of the word pre- 
diction strategies. As an example, a flow chart of 
hypothesized user activity for Strategy 2 is shown in 
Figure 1. The major activities for both strategies are 
kcypreaata (to sslar;t a letler or a wora) and llst 



Koester and Levine 

.I ,- 7 - -1 pet nen word p--- 1 

I vcnty ~opt~onal) / select two leners 1 
L 

A 
- 

I 

- -  I 

-\ .l< - 
? i  i t 

select lener 

Figure 1. Flow chart representing activities required during use 
of Strategy 2 wrth the Letters + WP system. 
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searches, so these were ch&en as the two user 
model parameters. 

Each item selected during use of word prediction 
was modeled in terms of keypress and list search 
times, as follows. First, every item required one key- 
press, and it was assumed that the keypress time was 
the same for letters and words and was independent 
of the key's position. Second, some selections 
included a list search and keypress, depending on 
the rules of the strategy, while some involved a key- 
press only. It was assumed that the time required for 
the list search was independent of the list contents 
and the sequential position of the search in the series 
of searches performed for the word. Each selection 
time, then, was represented by a key 
a list search plus keypress (t, + tk). 

Word Entry Times 

The representations of each item selection provided 
the building blocks for models of word entry perfor- 
mance with the Letters + WP system. An equation for . 
each word's entry time was formed by summing the 
model times for each item selected for the word, 
assuming no overlap between item selection times. ' 

The exact equation for*each word was a function of 
the word prediction strategy employed by the user. . .' 
For example, to enter the word "tat," users of Strat- 
egy 1 would find the word in their first list search, 
before any letters had been entered, and select it. 
The equation for that word's entry time would then be 

t, + t,. Users of Strategy 2, in contrast, would first 
select the "t" and the "h," only then searching the list 
and completing the word with a list selection. The 
resulting equation in that case would be (t, + 3tk). 
Equations for each word entered in each test session 
were formulated in this way. 

Overall Session Performance 

A variety of specific representations for overall ses- 
sion performance is possible, but all involve a simple 
weighted average of the number of list searches and 
the number of keypresses across the session. The 
average time necessary to generate each character in 
a session is the sum of two components: the number 
of searches per character (S) multiplied by the search 
time (t,) and the number of keypresses per character 
(1-ksav) multiplied by the keypress time (tk).2 The 
equation for text generation rate with word prediction, 
TGR,, can then be written as follows, after convert- 
ing units of seconds per character to characters per 
minute: 

The percent improvement in text generation rate 
relative to Letters-only typing, TGIMP, was repre- 
sented as: 

TGRw - TOR. .' . % 

TGIMP = 
TGRI~ 

(2) 

where TGR, is the Letters-only typing rate, modeled 
as 60/tk. . $  - * - 

.-t . '.>.?') < '  
- - 

Task Parameters 

In Equation 1, the parameters that represent the 
task are S, the number of searches per character, 
and ksav, the keystroke savings provided by the Let- 
ters + WP system. The values for these are a func- 
tion of the search strategy used, the specific charac- 
teristics of the prediction algorithm, and the 
transcription text for each session. .Task parameters 
were computed by simulating the entry of each tran- 
scription test with each strategy, assuming error-free 
and strategy-compli ription, and are 
shown in Table 1. 

. i . C .  - < 

- User ~araketer*; . 

The two parameters that represent the user are tk, 
for keypress time, and t,, for list search time. Two 
methods were used to determine the values for these 
parameters. For Model 1A, user parameters were 

ZKsav is the keystroke savings provided by the word prediction 
system, expressed as a proportion rather than a percent. 
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\.. . ' :.:I TABLE 1 Letters + WP Task Parameters for Strategies 1 TABLE 2 Independent User Paraineter Values Used in 
and 2 Model I A  

Strategy 1 Sessron WP Keypress, I, Llst Search. I, 

- -  (set) (sec) 

I q? rc 
0 258 0 703 1 153 .. - .  1 000 

, . , . ..... ?+ r a 

0 508 0 580 * 7 2~-4 SIJ-?. > 1117 0 247 0 686 0781 hi< .'. 2 

3 2s.. ::.% ~ ~ - 5  : :-; 1 088 &is~< :G 
0519 0594 0 258 0 703 '0 676 

F~ 3 -  . 1% @;r. 8 -- . a $ 
e 

0518 0587 0.250 0 701 a ? 1 065 g&+, e+ q& 0 61 0 4 " ''.'D -+ , *  

5 .;;: ',. 1045 .p;*..-,+ 3 .* : 0 564 
0 456 0 475 0.194 0 585 

-,86 -4&.? ' . - . 2  - p;% ;:, k7,- 

6 0 541 0 682 0 257 0.765 1 028 2 %  0.528 6 
,:.?t . * . f .  

determined from previous studies reported in the lit- and seventh test sessions; and (2) draw a Power Law 
erature. For Model 18, user parameter values for curve between the estimates for Sessions 1 and 7 to 
each subject were derived directly from the subject's determine values for the intermediate sessions. 
performance data. Details regarding each of these In defining the list search value for the first session, 
methods are provided below, ne relevant result is Neisser's finding that visual scan- 

ing requires about 0.2 seconds per word (Neisser, 
User Parameters for Model 1A 963), or 1.2 seconds for a six-word prediction list, 

ssuming each word is examined in series. However, 
Human keypress times have ies, employing longer lists, suggest that this * 

number of previous human-co probably too long (Card, 1982; Somberg, 
les (Card et al., 1983; Olson fore, the expected search time for the first 
ever, studies of AB typists were n set at 1.0 seconds. 
priate sources of mouthstick or hand splint typing There is little direct evidence to guide estimates of 
speed, and measurements for physically disabled typ- for the seventh test session, although 
ists could not be found in the literature. Therefore, ts of several hundred milliseconds 
the performance of A8 individuals who typed with blocks of search trials have been reported 
mouthsticks for 30 typing tests was used as the basis r & Nachbar, 1985; Somberg, 1987). There- 
for independent estimates of ke alytical approach was used, which 
Gauger, Bowers, & Khan, 1986). The average typing ssumed that the time for practiced searches would 
speed for the 30 tests was plotted and fit to a Power c function of list length (Landauer & 
Law curve, which accounted for 90% of the variance 5) (i.e., t, = [m]logn[list~len + I], where 
in the data.3 The fitted values were used to approxi- slope, m, is the time required to search a single 
mate what would be expected across the seven test The slope was modeled as a simple pattern 
sessions, as shown in Table 2. , taking an average of 0.17 seconds (Card et al., 

Independent values for list search time were . With a list length of six words, this yields an 
derived from a composite of st proximately 0.5 seconds fort, in a prac- 
(Card, 1982; Landauer & Na d this value was used as the estimate 
1963; Somberg, 1987). None ~n the seventh test session. 
matches the search task prese of the list search estimates were 
diction system or provides specific information on how ining a Power Law curve based on 
list search time improves across sessions. Therefore, he first and seventh sessions. The 
the following approach was used to estimate a list re shown in Table 2. 
search time for each session: (1) establish a theoret- 
ically appropriate value for search times in the first er Parameters for Model 19 

In contrast to the independent parameter values used 
3The Power Law of Practtce states that task ttme tmproves with 1 A, Model 18 employed values derived directly 

pract~ce at a rate approx~rnately proportional to a power of the 
amount of practtce (Card et al., 1983). Its mathematical expression 

empirical data for each of the 14 subjects. 

s T, = T , ~ - Q ,  where T, is task time on the nth trial, TI is task time r the component actions of list search and key- 
>n the f ~ r s t  trial, n the number of tr~als. and IS a constant press while using Letters + WP Were determined using 
N ~ O S ~  value depends on the task. the subtractive methods of Card et al. (1 983) and Olson 
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and. Nilsen (1 988). Based on the strategy used with Let- 
ters + WP, each item selection was labelled according 
to whether it involved a keypress preceded by a list 
search or a keypress with no list search. For example, 
for users of Strategy 2, the first two selections of every 
word were labelled as keypress only. The keypress time 
(tk) during use of Letters + WP was then calculated by 
averaging the times for all keypress-only selections in 
the session. The list search time (t,) was derived by 
subtracting one t, from the time recorded for each list 
search-plus-keypress selection, then averaging the 
remaining times. The keypress time during Letters-only 
typing was calculated by averaging all selection times 
in the Letters-only test of each session. A set of para- 
meter values was derived for each subject and every 
test session. Table 3 shows the derived user parame- 
ter values for keypress times during use of Letters-only 
and Letters + WP as well as list search times. 

Simulations with Model 1 

The dependent variable for overall session perfor- 
mance was the percent improvement in text generation 
rate with Letters + WP relative to Letters-only typing 
(TGIMP). In Model 1A, model predictions of TGIMP at 
each session were generated by substituting the task 
and independent user parameter values for that session 
into the model equations (Equations 1 and 2). For 
Model 18, each subject's parameter values from Ses- 
sion 3 were used to predict performance in Sessions 4, 
5,6, and 7. This method was employed because user 
parameter values were derived directly from a session's 
data, so they could not be used to meaningfully simu- 
late overall performance from that same ses~ion.~ Ses- 

'When parameter values derived from a session's data are used 
to simulate overall performance in that same session, the model 
error is precisely zero. 

sions 4 to 7 were chosen for validation to represent 
fairly well-practiced performance at four different levels 
of keystroke savings, leaving Session 3 as the best 
remaining source for the parameter values, 

Methods for performing word- and item-level simu- 
lations were identical for both models. For word-level 
simulations, the time to enter each word during each 
session of Letters + WP use was predicted by sub- 
stituting the user parameter values for that session 
into the word's model equation. Similarly, model-pre- 
dicted times for each item selected in a session were 
calculated as either one keypress time (tk) or a list 
search-plus-keypress (t, + t,). 

Measures of Accuracy for Model 1 

Model error for session-level simulations was mea- 
sured as (TGIMPac,ual - TGIMPm,,,,). For word- and 
item-level simulations, model error scores for each 
subject in a given session were computed as: 

TABLE 3: Empirically Derived User Parameter Values Used in Model 18 

. , 

1 aetue1 

where T,,,,,, is the actual time for the word or item and 
Tmodsl is the model-simulated time (John, 1988; Olson 
8 Nilsen, 1988). Additionally, the accuracy of each 
model in predicting differences between users of dif- 
ferent strategies was assessed by comparing the 
model-predicted difference to the observed difference. 

Statistical analyses of the error scores were per- 
formed using a repeated measures ANOVA, with 
between-subjects factors of strategy and presence1 
absence of SCI and within-subjects factor of test ses- 
sion. To compare the accuracy of Models 1A and 18, 
the repeated measures analysis was performed on all 
error scores, with the additional within-subjects factor 
of model type. Statistical significance was judged at a 
family-wise p value of .05, using the Bonferroni proce- 
dure to divide by the number of effects examined within 

LO Keypress (sec) WP Keypress (sec) List Search (sec) 

Session A 6  SCI A 6  SCI AB SCI 

Mean 0.870 0.561 0.955 0.829 0.577 1.137 
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he test (Girden. 1992). For example. a test analyzing 
hree factors examines seven different effects (three 
nain effects and four interactions), so the critical p 
lalue used for any one of these seven would be 
0517 = .007. Additionally, all p values were those 
idjusted based on the Greenhouse-Ge~sser epsilon as 
i further precaution against Type I errors (i.e., mlstak- 
?nly judging a difference to be significant when it truly 
s not) (Girden, 1992). 

MODELING STUDY #I :  RESULTS 

Session Level Simulations 

Figure 2 illustrates the Model 1A predictions for 
?ach strategy as compared to the average improve- 
ment with word prediction relative to letters only 
:TGIMP) achieved by each subject group.= Actual 
mprovements were lower than those predicted by the 
nodel, and the difference was particularly large for 
subjects with SCI. 

Table 4 illustrates the average accuracy across ses- 
sions for both models. Results were collapsed across 
strategy because it did not have a significant effect on 
model accuracy for either model. Both models were 
fairly accurate at representing the performance of AB 
subjects. For Model 1A, accuracy was significantly 
worse for subjects with SCls, but this was not the 
case for Model 10. Session was a statistically signif- 

similar graphic representation is not possible for Model 1B 
since model simulations and actual performance were compared 
individually for each subject. 

I I I I I I I 

4 Model 1A 
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n'c,',, 
, , 
; I. 

- - 
- -* - -  0 
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' 8  
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+ 
I I 1 -  I I I -60 
1 2 3 4 5 6 7  
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TABLE 4: Session-Level Errors of Models 1A and 18 

Model I A  Model 16 

Sublects N Mean 95% CI Mean 95?4 CI 

SCI 6 53 .07 (49 .5 .56 .7 )  4.04 (2.0, 6.1) 

All 14 29.11 (16.4. 41.8) 6.27 (4.0, 8.6) 

Error scores were averaged across sesslons and the result~ng sublect 
error scores were used to compute these statlstlcs 

<>-- ;,:< ;. . - 

icant effect in Model 1 A, but not in Model 18. Accu- 
racy with Model 18 was significantly better than Model 
1A across all subjects, especially for subjects with 
SCls, for whom accuracy improved by almost 50 per- 
centage points, as compared to about 3 percentage 
points for AB subjects. 

The ability of Model 1A to predict differences 
between strategies was mixed. The model predicted 
that subjects who used Strategy 2 would have text 
generation rate improvements an average of 7.5 per- 
centage points higher than subjects who used Strat- 
egy 1. This proved to be fairly accurate for subjects 
with SCI, as the average TGlMP for Group SC12 was 
10.9 percentage points higher than that of Group 
SCI1. However, the relative accuracy of Model 1A 
was poor for AB subjects, as subjects in Group A02 
had text generation rate improvements that were 4 
percentage points lower than users of Group AB1. 

Model 18 was more accurate at predicting differ- 
ences between strategies. The projected differences in 
text generation rate improvements between Strategy 2 

I + Model 1A I 

Session 

:igure 2. A. Comparisons of Model 1A predictions of TGlMP to observed averages of Groups AB1 and SCI1, across sessions. 6. Corn- 
)arisons of Model 1A predictions of TGlMP to observed averages  o f  Groups  A 6 2  a n d  SC12. across sessions. 
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and Strategy 1 were -2.9 and 11.9 percentage points TABLE 5 Word Entry Errors of Models 1A and 16 

for AB and SCI subjects, respectively, as compared to 
Model 1A Model 16 actual differences of -3.2 and 12.6 percentage points. 

Sublects N Mean &j06 CI Mean 95'6 CI 

Word Entry Simulations 

Figure 3 illustrates the average error for Models 14 
and 1 B simulations of word entry time. Model 1 A error 
averaged 20.7% for the AB subjects and 35.0% for the 
SCI subjects with no statistically significant differ- 
ences between subject groups, either on the basis of 
SCI or strategy. Session was a significant factor, as 
the model error was lower for later test sessions. 

For Model 1 B, model accuracy was not significantly 
different for the two strategies of Letters + WP use or 
for any of the seven test sessions. The average Model 
1 B error was 13.3% for AB subjects and 20.7% for 
SCI subjects. While that difference approaches sta- 
tistical significance, at p = ,019, it does not meet the 
Bonferroni criterion p value of .007. 

As expected, the Model 1 B word entry simulations 
were more accurate than Model 1A. The average 
improvement in accuracy was 10.5 percentage points 
across all subject groups and sessions, with the first 
two sessions showing the most improvement. There 
was no difference in the improvements for users of dif- 
ferent Letters + WP strategies, but improvements for 
AB and SCI subjects were different. For AB subjects, 
the average improvement in accuracy was 7.5 per- 
centage points, which was statistically significant. For 
subjects with SCI, Model 1B improved accuracy by 
14.3 percentage points, but this improvement was not 
statistically significant, due to high variation in 
improvements for different subjects with SCI. 

Table 5 presents the average error across sessions 
for both models, as well as the 95% confidence inter- 

A. Model 1 A 

50 

Session 

SCI 6 35.0 (11.23.58.77) 20.7 (13.59.27.82) 

All 14 26.3 (17.68, 36.12) 16.5 (13.20. 19.80) 

& ; -2, - . <  ,, ,,.$ $ ,z*::, ; '. *-=; , 

vals (Cls). Variation between AB subjects was quite 
small for both models, as illustrated by the narrow 
Cls. Variation in model error was larger for the SCI 
than the AB subjects, particularly for Model 1A. Model 
errors for some of the subjects with SCI were very 
similar to those of the AB, but this was not true for all. 

Item Selection Simulations 

Figure 4 shows the average Model 1 A and Model 1 B 
errors for item selection times for each subject groupe6 
These were computed for Session 4 only, to measure 
the accuracy that might be expected after some prac- 
tice. The errors were larger than those seen for word 
entry times since there was no longer any opportunity 
for errors to cancel each other out. For both models, the 
difference in accuracy between the average error for 
AB subjects and SCI subjects is striking, suggesting 
that for at least some subjects with SCI, the models' 
representation of their item-by-item activity was quite 
flawed. This large difference was not quite statistically 

6Numeric data are also shown in Table 8 below in the Results 
section for the second modeling study. 

B. Model 18 

50 

10 --8-- Group A 8 1  

-e-- Grouo A62  
---Q--- @OUO sell 

0 .-.o--- G~OUO SC12 
1 2 3 4 5 6 7  

Session 

Figure 3. Error of Models 1A and 16 for word entry times, averaged for each subject group. 
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Flgure 4. Errors of Models 1 A and 18 for item selection time sim- 
ulations, averaged for each subject group. 

significant, however. For both models, there was no 
significant difference between errors for users of dif- 
ferent Letters + WP strategies. 

Use of derived parameter values improved model 
accuracy over Model 1A by an average of 15.4 per- 
centage points for all subject groups, which was sta- 
tistically significant. The smallest improvement was 
6.4 percentage points for Group AB1, with the largest 
at 31.2 percentage points for Group SC12. Although 
improvement was larger for the subjects with SCls, 
the interaction between model type and SCI was not 
significant. 

For both models, the variation in errors between 
individual A0 subjects was quite low, while errors for 
the subjects with SCls had a higher variance. This 
large variance is the primary reason why the differ- 
ence in accuracy between A 6  and SCI subjects was 
not statistically significant. For Model 1 B, when the 
SCI subject with the highest error was excluded from 
the analysis, accuracy for the AB subjects was 11.7 
percentage points greater than for subjects with SCls, 
and this smaller difference was statistically significant. 

While the results with the simple structure of Model 
1 were encouraging, its simplicity undoubtedly led to' 
some mismatch between the model representation 
and subjects' actual behavior. This mismatch was 
revealed in the relatively high model errors observed 
for selection times of individual items, which averaged 
almost 50% for subjects with SCls, even when empir- 
ically derived user parameter values were used. One 
assumption in the Model 1 simulations was that a 
user's list search time could be represented by a sin- 
gle value, regardless of the conditions of the search. 
The flaws in this assumption are one possible source 
of error in the original model. 

The hypothesis of this second modeling study is 
that revising the model structure to refine the repre- 
sentation of list search time may improve model accu- 
racy. Additionally, modeling list search in greater 
detail is expected to provide further understanding of 
the list search process during use of word prediction. 
The second modeling study develops a revised model 
structure, referred to as Model 2, and compares the 
accuracy of its simulations to the previously devel- 
oped Models 1A and 10. 

MODELING STUDY #2: METHODS 

Empirical Data for Model Development 
and Validation 

Data from the same experiment used to validate 
Model 1 were used for the development and validation 
of Model 2. Due to the amount of analysis involved, 
only data from Session 4 were used to develop and 
test Model 2. The list search times for each subject in 
Session 4 were analyzed to determine the new struc- 
ture for Model 2, as discussed in more detail below. 
Model 2 simulations were tested for accuracy against 
the actual word entry and item selection times of each 
subject. 

General Approach to Structure Revision 

The general strategy used to develop Model 2 was to 
identify candidate factors that might influence list search 
time, determine the relative strength of each of these 
factors using regression analysis, and create a new 
model of list search time to reflect the influence of the 
strongest factors. Keypress time was not analyzed for 
possible structure revision and remained as a single 
parameter value. The goal 'was to find predictor vari- 
ables that worked well for a majority of subjects using 
a particular word prediction strategy, rather than finding 
a unique set of predictor variables for each subject. 

Identifying Predictor Variables for List 
Search Time 

Based on the list search literature.(Card, 1982; Lan- 
dauer & Nachbar, 1985; Neisser, 1963; Somberg, 
1987), as well as the observed performance of these 
subjects, two hypotheses were generated regarding 
the factors that may systematically explain variation in 
list search time. Because it is possible that a user's 
search processes might be different for successful (i.e., 
the target word was found and selected) and unsuc- 
cessful searches, the implications of each hypothesis 
for both types of searches were considered. 

Hypothesis #1: Serial Search 

The serial search hypothesis states that list 
searches are performed serially, with each word 
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examined one by one. Specifically, the time for sue- 
cessful searches is a linear function of the word's 
position in the list, while the time for unsuccessful 
searches is a linear function of the list length. Gibler 
and Childress ( I  982) employed the serial model, with, 
the assumption that the linear slope would be 200, 
milliseconds/word, but they did not empirically verify - 
it. The serial search hypothesis contrasts with Lan- 
dauer and Nachbar's (1985) findings that logarithmic 
searches are possible. 

. . 7, . 

Hypothesis #2: Anticipation . .  

The anticipation hypothesis states that search time 
is affected by the extent to which the user can accu- 
rately anticipate the list contents. Search time should 
be faster at higher levels of accurate anticipation. For 
successful searches, anticipation of the word's posi-,- 
tion in the list would provide more direct and therefore 
faster identification of the word. For unsuccessful 
searches, anticipation that the word will not be in the 
list for this search would support a less thorough and 
therefore faster scan through the list. Anticipation may 
be influenced by the general typicality of the target 
word in English or by prior experience with the word's 
appearance in the list. 

These two hypotheses are not mutually exclusive. 
Serial search and anticipation could both be employed 
in a given session or even for a given word. The ques- 
tion to be addressed in evaluating these hypotheses 
is not which one is true, but rather to what extent 
either of them is true. 

Based on these hypotheses, a set of candidate pr 
dictor variables was defined. The first variabl 
SRCH-TYPE, was used to distinguish between suc 
cessful (SRCH-TYPE = 1) and unsuccessf 
(SRCH-TYPE = 0) searches, in order to d 
search time depends on whether or not 
word was found in the list. If serial search i 
unsuccessful searches should take longer than s 
cessful ones, since each word in the list would 
examined. If anticipation is dominant, unsuccessful 
searches might be faster, due to skimming of the list 
when success is perceived to be unlikely. Successful 
and unsuccessful search times were also analyze 
separately using different predictor variables. a 
described below. 

, . 
' 3 7 ,  Successful Searches 

The following predictor variables were tested for 
successful searches: 

1. LPOS--the position of thetargd word in the list, 
ranging from LPOS = 1 at the top of the list 
through LPOS = 6 at the bottom of the list. To the 
extent that the serial search hypothesis is accu- 
rate, there should be a positive linear relationship 
between successful search times and LPOS. 

I 

2. TYPIC-typicality of the target word in English. 
based on Jones and Wepman's (1966) spoken 
word count. Three levels of TYPIC were defined: 
o (low) for words that rank lower than the 85th 
most typical in English, 1 (medium) for words rank- 
ing between 21st and 85th most frequent. and 2 
(high) for the top 20 most frequent words.' It 
should be noted that TYPIC was highly correlated 
with the number of provious encounters with the 
target word during prior test sessions, so a high 
value of TYPIC is also an indicator of the potential 
for learning when and where the word will appear 
through direct experience. High typicality, previous 
experience, or both could enhance a user's ability 
to anticipate when and where the word will appear 
in the list, resulting in faster search times. A neg- 
ative linear relationship between TYPIC and suc- 
cessful search times would be consistent with the 
anticipation hypothesis. - r  7. -- * -- 

Unsuccessful Searches 

The following predictor variables were tested for 
unsuccessful searches: 

1. LLEN-the length of the word prediction list (rang- 
ing from 0-6). Most often, the list contained a full 
six words, but it was shorter when fewer than six 
dictionary words matched a subject's current 
input. If serial search was employed during unsuc- 
cessful searches, there should be a positive linear 
relationship between unsuccessful search times 
and LLEN. 

2. SRCHNUM-the ordinal position of the search in 
the series of searches across the entire word 
(ranging from 1-N). For example, when the word 
"never" was entered using Strategy 1, the "nn was 
coded as SRCHNUM = 1, as the first search for 
the word, the "en as SRCHNUM = 2, and so on 
until the word was found in the list. When the user 
can anticipate that the word will probably appear 
only after several letter selections, less time may 
be spent on the early searches. Therefore, to be 
consistent with the anticipation hypothesis, unsuc- 
cessful list search times should have a positive 
linear relationship to SRCHNUM. 

' - _ c Regression Methods for Evaluating 
Predlctor Variables 

All analyses were performed separately for users of 
different word prediction strategies because the spe- 
cific strengths of the predictor variables were not nec- 
essarily expected to be the same due to differences 
in the strategy search rules.-To test the relationship - - ">. -2 . * - *  " 4  

,t * , > 
. - 

The choice of the 85th most frequent word as the cut-off for low 
typicality was made such that all low typicality words appeared at- 
most once across the transcription texts used in this study. 
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between search times and the success or failure of 
the search, each subject's list search times in Session 
4 were regressed on the SRCH-TYPE variable. 

The strength of the remaining candidate predictor 
variables was evaluated by a series of multivariate 
and bivariate regression analyses of list search times 
in Session 4, performed separately for successful and 
unsuccessful searches. The general procedure was to 
test four different regression models: the full multiple 
regression model with both predictor variables and 
their interaction, the full model without interaction, and 
the two bivariate models (one for each predictor). 

The significance of the regresion coefficients and 
the variance explained by the predictor variables were 
evaluated to determine the relative strength of each 
predictor variable. Those predictors that explained at 
least 10% of the variance and were statistically sig- 
nificant at the 0.05 level for the majority of subjects in 
each strategy group were selected for Model 2. The 
results of these analyses are summarized below. 

Therefore. SRCH-TYPE was not considered to be a 
strong predictor of list search times. 

Regression Results for Successful Searches 

Strategy 1 Subjects 

The combination of LPOS (word's position in list) and 
TYPlC (word's typicality) explained an average of 
12.6% of the variance in successful search times. The 
coefficient for LPOS was significant for five of the seven 
subjects, while the TYPlC coefficient was significant for 
only one subject. The bivariate analyses also showed 
TYPlC to be a weak predictor, as TYPlC by itself 
explained an average of only 3.2% of the variance. The 
bivariate relationship between successful search times 
and LPOS alone explained an average of 10.1 % of the 
variance and was significant for five of seven subjects. 

Strategy 2 Subjects 

MODELING STUDY #2: LIST SEARCH Regressing successful search times on the linear 

ANALYSIS RESULTS combination of LPOS (word's position in list) and TYPlC 
(word's typicality) for Strategy 2 subjects explained 

Observed List Search Times 37.8% of the variance in list search times. Additionally, 
the coefficients for LPOS and TYPlC were each sianif- 
icant for a majority of subjects, suggesting that 60th 

The average Observed list search times in Session predictor variables had a strong contribution to the fit of 
were seconds for AB with a 95% the multiple regression model. The interaction between of (0.51. O.72), and 1.1 8 seconds for subjects with LPOS and did not improve regression fit. SCI, with a 95% CI of (0.90, 1.40). These and other 

empirical results from the study have been discussed Regression Results for Unsuccessful Searches previously (Koester & Levine, 1994, 1996) but are 
provided here to give background to the regression , Subbets results reported below. 

Regression Results for Successful vs. 
Unsuccessful Searches 

Strategy 1 Subjects 

Unsuccessful searches were an average of 240 mil- 
liseconds (msec) faster than successful searches, 
suggesting that Strategy 1 subjects skimmed the list 
when success was not likely. The regression coeffi- 
cient for SRCH-TYPE was significant for five of seven 
subjects, but it explained more than 10% of the vari- 
ance in search times for only two subjects. Therefore, 
SRCH-TYPE was not considered to be a strong pre- 
dictor of list search times. 

Strategy 2 Subjects 

On average, unsuccessful searches were 50 mil- 
liseconds faster than successful ones; the difference 
was not statistically significant for any of the seven 
subjects. SRCH-TYPE explained only 1.6% of the 
variance in search times for this group, and the vari- 
ance explained did not exceed 10% for any subject. 

Each subject's list search times were fit to a full 
regression model in LLEN (list length) and SRCH- 
NUM (search number). The model explained an aver- 
age of 23.8% of the variance in unsuccessful list 
search times, and the LLEN SRCHNUM interaction 
was significant for six of seven subjects. ' 

To determine the source of the interaction, the 
bivariate relationship between list length and unsuc- 
cessful search time was examined. For all Strategy 1 
subjects, there was a positive linear tiend across par- 
tially full lists (LLEN c 6) and a downturn when the list 
was full (LLEN = 6). This suggests that a linear model 
in LLEN was most appropriate only for partially full 
lists. When the bivariate influence of LLEN was exam- 
ined for partially full lists only, a significant linear rela- 
tionship was observed for six of seven subjects, and 
LLEN explained an average of 45.1 % of the variance 
in times for unsuccessful searches of partially full lists. 
Furthermore, when SRCHNUM was added to this 
model, the amount of variance explained improved 
only slightly, to an average of 47%. 

The weak influence of SRCHNUM on search times 
for partially full lists, combined with the relatively fast 
search times seen for full lists, suggests that the inter- 
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action between LLEN and SRCHNUM was due largely 
to SRCHNUM's stronger effect on full lists. This was 
supported by the bivariate analysis of SRCHNUM and 
the unsuccessful search times for full lists, which 
revealed a significant positive linear relationship for 
six of seven subjects. SRCHNUM explained an aver- 
age of 18.79k of the variance in these search times, 
and, on average, each successive search took 240 
milliseconds longer than the previous one, providing 
strong evidence that Strategy 1 subjects did make 
guesses as to when the word would appear in the list. 

Strategy 2 Subjects 

For Strategy 2 subjects, regressing unsuccessful list 
search times on LLEN (list length) and SRCHNUM 
(search number) explained an average of 35.0% of the 
variance in unsuccessful search times. The interaction 
between LLEN and SRCHNUM was not significant and 
did not improve regression fit. The LLEN coefficient 
was significant for four of seven subjects, while the 
SRCHNUM coefficient was significant for only two sub- 
jects. The bivariate relationship between unsuccessful 
search times and LLEN explained an average of 30.7% 
of the variance in list search times. The decrease in 
search time for full lists that was observed for Strategy 
1 subjects was not observed for Strategy 2. 

Summary of Strong Predlctor Variables 

Table 6 summarizes the predictor variables that had 
the strongest influence on list search times for users 
of each word prediction strategy. These variables were 
chosen for use in the revised structure of Model 2. 

MODELING STUDY #2: MODEL 
SIMULATION RESULTS 

Calculation of Revised Llst Search Values 

Based on the strong predictors identified above, 
new values for list search times were calculated for 
each subject to better reflect how search time varies 
with the conditions of the search. For example, to rep- 

resent successful searches for a Strategy 1 subject, 
search times at each level of LPOS were calculated 
from the bivariate regression equation for that subject. 
Similarly, new search times for other contexts were 
calculated using each subject's regression equation 
for the strong predictor variables in Table 6. The key- 
press times used were the same as those derived in 
Model 16. 

Model Simulations with Revised 
Model Structure 

Model simulations for word entry and item selection 
times were performed for each subject and compared 
to the actual times observed in Session 4, following 
the same methods used in Models 1A and 1 8 ,  
described above. Session model errors were not com- 
puted since only one session was analyzed. The per- 
cent error of Model 2 was compared to Models 1 A and 
16 using a repeated measures ANOVA technique, 
with the between-subject factors of strategy and SCI 
and within-subject factor of model type. Statistical 
comparisons of Model 2 error for the between-subject 
factors of strategy and SCI were made using standard 
ANOVA tests. For all statistical tests, significance was 
judged at a family-wise p value of .05. 

Word Entry Slmulatlonrr 

Table 7 shows the average error of Model 2 sirnu- 
lations of word entry times for each subject group, 
along with the corresponding errors for Models 1A 
and 1 0  in Session 4. Model 2 results are discussed 
relative to Model 1 8  primarily, since that was the more 
accurate of the Model 1 implementations. For word 
entry simulations, the average error for Model 2 
across all subjects was 14.3%, which was a small but 
statistically significant improvement over Model 18. 

Like Models 1A and 1 B, the average error of Model 
2 was not significantly different for Strategy 2 subjects 
as compared to Strategy 1. Also consistent with Model 
1 results, Model 2 error was greater for subjects with 
SCls, averaging 19.4%, as compared to A 0  subjects 
at 10.5%. This difference was not statistically signifi- 

- -9 
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. - TABLE 6: Summary 01 Strongest Predlttor Variables lor Each Strategy , <,:: - .  +<--.;y,3 - *- .- ->' .' 
Search Type Strategy Coefficient Mean (msec) SO (msec) N Significant Average At (%) 

Successful 1 

2 

Unsuccessful 1 

LPOS 88 64 . , -  - 5/7 10.1 

' "DS 172 102 5l7 37.8 

TYPIC -1 93 82 417 

SRCHNUM' 237 164 617 18.7 

LLEN' 192 68 617 45.1 

2 LLEN 1 1  97 6l7 30.7 , ' 5 '.T ,', %.& - 
- 

Coefficient means were averaged across subjects and are in msec units. 
'Regressed on searches of full lists: t regressed on searches of partially full Ilsts. 
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TABLE 7 Word-Level Simulation Errors for Models l A ,  16, and 2 in Session 4 

Model 1A Model 18 

Subjects N Mean 9 5 O 6  CI Mean 9 5 O 6  CI 
-------I- . . . . . . - - - . . _ _ _ 
A B 8 179 (149 .209 )  11.5 (10.6. 12.4) 0.5 (9.8. 11.1) 

SCI 6 34.5 (14.7. 54.3) 22.5 (9.0. 35.9) 19.4 (6.4. 32.3) 

Al l  14 25.0 (15.5. 34.6) 16 2 (10.6. 21.8) 14.3 (9.1. 19.4) 

cant, however, largely because high error for one sub- 
ject (BG) led to high variance within the subjects with 
SCls.8 The average improvement in accuracy with 
Model 2 as compared to Model 16 was significantly 
larger for subjects with SCls, at 3.1 percentage points, 
as compared to AB subjects at 1 0 percentage point. 

The variation In Model 2 error between individual 
subjects was similar to that seen in Model 1 B simula- 
tions of word entry times. Ten of the 14 subjects had 
very similar errors, ranging from 9.5% to 12.2%. The 
subjects in Group SC12 had slightly higher errors, from 
14.50A to 19.6O/0, and subject BG (of Group SCI1) con- 
tinued to have the largest error at 43.8%. The persis- 
tently high error for subject BG even after this fairly 
extensive structural revision suggests a large amount 
of unsystematic variation in his performance. ,* ( 7  - t .  . 
item Selection Simulations 

Table 8 shows the average error of Model 2 simu- 
lations of item selection times for each subject group, 
along with the corresponding errors for Models 1A 
and 1 B in Session 4. Across all subjects, Model 2 
yielded a statistically significant improvement in accu- 
racy over Model 18. Model 2 error for subjects with 
SCls averaged 42.6% and 17.6% for A 8  subjects. 
This large difference was not statistically significant, 
however. Word prediction strategy had no significant 
effect on Model 2's accuracy or improvement in accu- 
racy relative to Model 18. 

.- ,\i ',. ., 

8When this subject was removed from the analysis, the AB-SCI 
difference shrunk to 3.5 percentage points, but it was statisticallv 

Example: Comparison of Fit for 
Models 1 A, 1 B, and 2 

One way to concretely illustrate the fit of the three 
model implementations tested is to plot actual and 
predicted selection times for representative words. 
Figure 5 illustrates the entry of the word "choice" by 
subjects SJ, of Group AB1, and SD, of Group AB2, 
comparing their actual selection times to the times 
simulated by Models 1 A, 1 B, and 2. This word was not 
in the prediction dictionary so each of its six letters 
needed to be entered. 

Since Models 1 A and 1 B share the same structure, 
the pattern of their predictions is the same. Each item 
predicted to include a list search (e,g., the first four let- 
ters for subject SJ) is simulated at one fixed time (t, + 
t,), and each item predicted to include only a key- 
press (e.g., the first two letters for subject SO) is sim- 
ulated at another fixed time (tk). While this predicted 
pattern does not precisely fit the observed pattern, 
particularly for subject SJ, Model 18 provides a closer 
fit since its data-driven parameter values better reflect 
each subject's characteristics. 

In revising the model structure, the fit for subject SJ 
improved noticeably with Model 2 as compared to 
Model 1B, although the "peak" in model-predicted 
times is not as large as the actual peak. Use of the 
SRCHNUM predictor succeeded in modeling the 
gradual rise in search time across the letters "c," "h," 
and "0," while the decrease in search time across "0," 
"i," and "cn was accounted for by, considering the 
shrinking list length (LLEN). For subject SD, it is hard 
to improve on the close fit achieved by Model 16. 
However, the revised structure of Model 2 did sue- - .  significant. :%:." :, - t .  7 ,. , .> ,.=. . i5T:F, ?,*. .:. d , .,<. .--. .., ..,>-... ,.>..<> : . . \.:. . . 2:' 
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ceed in modeling the slight decrease in search time 
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" 3 .  -. TABLE 8: Item-level Simulation Errors for Models l A ,  lB ,  and 2 in Session 4 ' - "" ' 

Model 1A Model 18 , - +,;c Model 2 ." 
I. 

Subjects N ' Mean 95% CI Mean 95% CI - ' , > .4 Mean 95% CI 

AB 8 28.9 (26 0. 31 9) 20 8 (19.3, 22.3) ,,2 - i'l 17 6 (1 6.5, 18.8) 

SCI 
' t  

+ .-0 6 71.2 (12.5, 130.0) 48.7 (6.3, 91 I )  '" * .- . . 
t,:. - 7  

42.6 (5.1, 80.1) ' '  

All 14 47 1 (23.6. 70 8) 32.7 (16.1, 49.4) 28.3 (13.5. 43.1) 
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Subject SJ Subject SO 

Figure 5. Moment-by-moment graphs for SJ (Group AB1) and SO (Group AB2). entering the word "choice." Actual item selection times 
are connected by dotted line. Times predicted by Models 1 B and 2 are shown for comparison. 
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across "i" and "c," due to the shrinking list length, 
which Model 1 B did not account for. 

Quantitatively, the Model 2 error for SJ's entry of 
"choice" was 6.9%, which was actually worse than the 
Model 16 error of 0.1 1 %. This was due to advanta- 
geous cancelling of errors under Model 1%. In con- 
trast, the item selection time error was much improved 
with the revised structure of Model 2, at 12.5%, com- 
pared to the 25.8% error under Model 16. For SD, the 
error for "choice" overall improved from 10.4% under 
Model 16 to 5.8% with Model 2, while the item selec- 
tion time error was unchanged at 11 -6% for this word. 
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DISCUSSION 

c h o i c e  c h o i c e  

The following discussion summarizes the major 
findings of this modeling research and discusses the 
progress made toward the specific aims outlined at 
the beginning of the paper. Limitations and future 
directions for this work are also presented. 

Aim 1 : Accuracy of a priori Model Predictions 

Aim 1 concerns the accuracy of a prioriperformance 
predictions, made with independent subject parameter 
values. This was measured by comparing Model 1A 
predictions to subjects' actual performance. A priori 
accuracy for the AB subjects, with an error of 1 1% for 
overall session performance and approximately 20% 
for word entry times, was quite good relative to the 
52% error reported in previous studies (Card et al., 
1983; Gong, 1993; John;1988; Olson & Nilsen, 1988). 
The success of the independent parameter values for 
these subjects provides some confidence that para- 
meters measured for similar individuals in different 
studies can be used to represent performance in new 
situations. Model 1A's accuracy was consistently 

worse for subjects with SCls, with an error of 35% for 
word entry times, which argues strongly for the use 01 
caution when transferring parameter values between 
studies. While Model 1 A was quite accurate for some 
of the SCI subjects, it was extremely inaccurate fot 
others. In contrast, model error was quite consistenl 
across the A6 subjects. The success of Model 1A in 
predicting differences between strategies was mixed, 
since the predicted advantage for Strategy 2 occurrec 
only for the SCI subjects. 

Aims 2 and 3: Model Accuracy across 
Different Conditions 

To be maximally useful, performance models shoulc 
be equally accurate for different conditions of interest, 
such as strategy of use, task characteristics, and usel 
characteristics. With respect to strategy of use, this was 
the case for Models 1A, 16, and 2, as strategy of wora 
prediction use had no effect on accuracy for any of the 
models. Model accuracy for Models 1 A and 18 was 
consistent across the changes in task characteristics 
that occurred in the last four  session^.^ Model 1A had 
mixed success at representing within-subject changes 
that occurred across sessions. Accuracy in the first twa 
sessions was worse than in subsequent sessions 
because the user parameter estimates for the early ses- 
sions were too slow compared to subjects' actual val- 
ues. Fortunately, a fast improvement in parameter val- 
ues was also predicted, which accounted for the 
improved accuracy in subsequent sessions. For Model 
16, accuracy was consistent across all sessions, which 

gThe sensitivity of Model 2 to the session-dependent factors 01 
task characteristics and user skill was not assessed for Model 2, 
as its accuracy was measured only in Sesslon 4. 
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demonstrates that changes in user characteristics were 
successfully accommodated by changes in the user 
parameter values. 

All three model implementations were not quite as 
successful at representing differences between sub- 
jects. since accuracy was almost always worse for 
the SCI as compared to A 0  subjects. The magnitude 
of the difference was largely a function of poor accu- 
racy for one SCI subject, BG, but even when this indi- 
vidual was removed from the analyses, model accu- 
racy remained worse for SCI performance. However, 
the fact that the models were less accurate for sub- 
jects with SCls does not mean that they are not applic- 
able for those subjects. In absolute terms, accuracy 
was quite good for subjects with SCI when empiri- 
cally derived parameter values were used in the mod- 
els. For example, even when subject BG was 
included, model error for SCI word entry times aver- 
aged 21% and 19% for Models 18 and 2, respec- 
tively. In addition, accuracy of Model 1 B in simulating 
se.ssion-level ~erformance measures was eauallv 
accurate across all subjects, with errors averaging 
well under 10°/~. , 
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Aim 4: ~elati*;e Accuracy of ~ i f f e ren t  - 

. Model Implementations 

The relative accuracy of different model implemen- 
tations was addressed by comparing the accuracy for 
Models 1 A, 16, and 2. The accuracy of Model 1 A vs. % 

1B is discussed first to illustrate the difference 
between using independent and data-driven user 
parameter values in the same model structure. Then 
Model 2 is discussed relative to Model 1 B, to highlight 
the effect of revising the model structure while using 
data-driven parameter values. 

Deriving user parameter values for each subject, as 
in Model 1B, led to significantly better accuracy than 
the independent parameter values used in Model 1A. 
The sources of this difference can be traced to several 
implicit assumptions involved in the use of indepen- 
dent parameter values. One assumption of Model 1A 
is that A6 and SCI subjects would have the same val- 
ues for keypress time. This is partially supported by 
the lack of a significant difference between the mea- 
sured keypress times during word prediction use for 
these groups. However, keypress times during Let: 
ters-only typing were faster for SCI than for AB sub- 
jects. An extension of this assumption is that every 
subject has the same keypress time. This is a sur- 
prisingly accurate assumption in the case of the A 8  
subjects, as the 95% CI were quite narrow for both Let- 
ters-only and Letters + WP keypress times. For sub- 
jects with SCls, however, variance between subjects 
was higher, as illustrated by the wider confidence 
intervals (see Table 3). 

The independent estimates also assumed that key- 
press time would be the same for the Letters-only and 
Letters + WP syqems, since the keypress parameter 
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is intended to reflect the motor component of item 
selection. The empirical data showed this assump- 
tion to be false, particularly for subjects with SCls. 
Keypress times during use of Letters + WP were sig- 
nificantly slower than during Letters-only typing, by an 
average of 23% across all subjects (Koester & Levine, 
1994, 1996). This difference has been attributed to 
additional cognitive load involved in the use of word 
prediction (Koester & Levine, 1994, 1996). 

For list search times, the independent estimates 
were much more accurate for AB than for SCI sub- 
jects. Actual list search times for AB subjects in the 
first two sessions were faster than the independent 
estimates, but for Sessions 3 to 7, the values were 
remarkably similar. The 27% improvement of AB sub- 
jects' list search times across sessions was less than 
the 50% expected based on the independent esti- 
mates. The list search times of the subjects with SCI 
refute the assumption that list search times would be 
the same for AB and SCI subjects. Subjects with SCls 
had much slower search times than the independent 
estimates, and their 2.7% improvement was much 
smaller than the rapid improvement suggested by the 
independent estimates. 

The model accuracy obtained with Model 1 B should 
be considered the best accuracy possible for this sim- 
ple model structure since the parameter values were 
derived directly from the performance data. While 
Model 1B simulations used parameters specific to 
each subject, it is also possible to average parameters 
across subjects before performing simulations, which 
would generally reduce model accuracy. The use of 
user-specific parameter values is important for the 
subjects with SCI in this study, given the individual dif- 
ferences seen in their parameter values. 

Concerning the future usefulness of Model 18, 
which depends on empirical measurements of user 
parameter values, it is encouraging to note that the 
parameter values derived for these subjects did not 
depend on the strategy used with word prediction. 
This helps provide confidence that a set of parameter 
values measured for an individual during use of one 
strategy could be used to simulate expected perfor- 
mance with an alternative strategy. However, there is- 
still a great deal left to learn about user parameter val- 
ues during use of word prediction. In particular, the 
source of differences between AB and SCI subjects, 
as well as expected changes in search time with prac- 
tice, must be better understood. 

In Model 2, the model structure was revised to pro- 
vide a more specific account of the list search action, 
yielding small improvements in accuracy of 1.9 and , 

4.4 percentage points over Model l B  for word entry 
and item selection times, respectively. While these 
were statistically significant improvements, the corre- 
sponding improvements in Model 18 accuracy relative 
to Model 1A were much larger, at 8.8 and 14.3 per- 
centage points. In both cases, improvements were . 
larger at the item selection level and were diluted at 
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the word level due to cancellation of positive and neg- 
ative errors. 

Part of the reason why Model 2 did not result in 
greater improvement was that accuracy for Model 1 B 
was already quite good, with Ies$ than 14% grror at 
the word level for 10 of the 14 subjects. While this is 
a comforting consideration, it does not account for the 
other four subjects whose Model 18 errors were 
around 20% or more. Accuracy for those subjects 
improved only slightly more under Model 2 than did 
those whose accuracy was already high with Model 
10, 

In developing Model 2, there were several limita- 
tions in the ability of the tested predictors to explain 
variance in list search time. This study was not specif- 
ically designed as an experiment to isolate potential 
factors in list search, so confounding between some 
factors was an issue and cases were not evenly dis- 
tributed across all levels of each factor. For example, 
only a relatively small percentage of searches were 
performed on partially full lists. While Model 2's sen- 
sitivity to list length better accounted for those cases, 
the overall effect on accuracy was low due to their 
small influence on the total number of cases. How- 
ever, the search conditions of this study were realis- 
tic representations of actual word prediction use, so 
conditions in which there were few cases reflect what 
would be expected with actual use. 

A second possibility for the relatively small improve- 
ment in accuracy with Model 2 is that the regression 
analyses did not examine all possible factors that may 
have influence over search time. For example, the 
nature of the distractor words in the list may have 
some systematic effect. It may be more difficult (and 
therefore slower) to find a target from among a list of 
words that all have the same length, perhaps, or that 
share the first one or two letters. Additionally, the 
presence of morphological variants of the target word 
may distract and even confuse the search process, 
whether the target word is present in the list or not. 

It is likely, however, that even the most compre- 
hensive set of predictors would be limited, as there 
may simply be a certain amount of variance in list 
search time that cannot be easily explained. The 
range of search conditions during use of word predic- 
tion may have led to more complex search perfor- 
mance than could be captured by the tested predic- 
tors. While the predictors did reveal some regularities 
in search performance, their influence an search time 
may be more specific and localized than could be 
modeled within the broad partitions of Model 2 (e.g,, 
all U ~ S U C C ~ S S ~ U ~  searches), and there may be other 
factors that were not even examined. In other words, 
the unexplained variancein list search time may not 
simply be entirely random; it could be menningfully 
cannected to subjects' goals and strategies in ways 
that are not easily discovered. 

Finally, Model 2 was revised only relative to list 
search time; keypress time remained a single para- 

meter as it was in Models 1A and 16. An attempt to 
explain variance in keypress time, perhaps through a 
Fitts' Law model, might lead to greater improvement 
in model accuracy (Olson & Olson, 1990), 

Limltatlons 

Although the model validation methods were 
designed to assess model accuracy under a range of 
conditions, it was not possible to examine every con- 
dition of interest in a single study. In particular, these 
validation results are most applicable to individuals 
who have developed skill but not long-term expertise 
with word prediction, have relatively low variation in 
the motor abilities relevant to use of their system, do 
not have significant cognitive impairments, and fol- 
low particular strategies in using a system. Future 
work validating the modeling techniques with other 
populations and with different systems is necessary in 
order to confidently apply models to a truly broad 
range of user-system combinations. 

The model structures tested in this work repre- 
sented user performance as a linear combination of 
component actions at the keystroke level with the 
assumption that component actions are performed 
serially rather than in parallel. This is a fairly simple 
structure, yet its validity is supported by the accuracy 
obtained with Model 10 (as well as Model 1A for AB - 
subjects). However, other types of modeling tech- 
niques could have been used. A more complex mod- 
eling technique, such as a GOMS model or a produc- 
tion system model, would represent performance at a 
finer level of detail, down to individual cognitive cycles 
taking 70 to 100 milliseconds (Card et al., 1983). A 
detailed model of this type may provide more insight 
into the source of cognitive overhead with word pre- 
diction. For example, it may suggest the specific cog- 
nitive processes that account for the slower keypress 
time observed with word prediction relative to Letters- 
only typing. This is a potential advantage of finer- 
grained models, and the extent of this advantage 
could be evaluated in future work. However, a more 
complex structure has distinct disadvantages in that it 
is more cumbersome to work with and more difficult to 
apply. The same is true for modeling.techniques that 
can cope with parallel execution of processes, such 
as critical path analysis (John, 1988). Examining the 
word prediction task using critical paths may lead to 
new insights into user behavior as well as opportuni- 
ties for enhancing performance, but its complexity 
makes it unsuitable as a starting point for model 
development. 

While the Keystroke-Level Model used here was 
reasonably accurate in simulating users' performance 
time with word predictian, it is not designed to address 
other important aspe~ts of usermsystern interaction. In 
particular, the technique has difficulty accounting for 
problem-solving aspects of user behavior, the effect of 
errors on performance, user fatigue, and user accep- 
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tance of a system (Olson & Olson, 1990). Thls means 
that the Keystroke-Level Model should not be 
expected to address every question related to AAC 
and computer access systems, but this limitation does 
not diminish its usefulness as a means of simulating 
performance time. 

One limitation that is not often explic~tly mentioned 
is that Keystroke-Level Models are tied to assump- 
tions about users' methods or strategies. While this 
has the advantage of supporting comparative analy- 
ses of different strategies, it limits the ability to make 
general conclusions about word prediction indepen- 
dent of the strategy used or in instances where a user 
does not follow a particular strategy. John (1 988) has 
addressed this limitation by averaging predicted times 
for all plausible strategies, which has practical value 
but detracts from the behavioral accuracy of the 
model. -., 

-L i 

Insights into List Search Performance 

While the revision in model structure did not 
improve model accuracy a great deal, the revision 
process did provide some insight into the factors that 
influence searching the word list. The results suggest 
that list search does have serial elements, as Gibler 
and Childress (1 982) hypothesized. Evidence of ser- 
ial list search was observed in successful as well as 
unsuccessful searches, through the significance of 
the word's position in the list (LPOS) and the list 
length (LLEN), respectively. One or both of these pre- 
dictor variables had a statistically significant influence 
on search time for all 14 subjects. The average coef- 
ficient for the LPOS and LLEN variables was 150 mil- 
liseconds, which can be interpreted as the time 
required to process one word in the list. This is simi- 
lar to, but a little faster than, the rate of 200 millisec- 
ondslword used by Gibler and Childress (1982) and 
observed by Neisser (1 963). 

These results also show that list search is not purely 
serial. Serial search appeared to be complemented by 
a knowledge-driven search, in which anticipation of 
success or failure affects how one searches the list, 
consistent with Somberg's (1 987) findings. Evidence 
of anticipation was observed for successful searches 
in Strategy 2; these subjects found highly typical 
words in the list an average of 380 milliseconds faster 
than atypical words. Additional support for anticipatory 
search was found for unsuccessful searches of full 
lists for Strategy 1 subjects; results strongly suggest 
that subjects did not thoroughly search the list word by 
word when they had a high expectation that it would 
not contain the target word:While anticipation was an 
important factor, it cannot be determined from the 
conditions of this study whether subjects' knowledge 
of list contents was learned through specific experi- 
ence with the word prediction system or inferred 
through knowledge of English. 

:\ , i . Practical Application of Results 

The prlmary goal of this paper was to demonstrate 
model accuracy in preparation for applying the mod- 
els in future work (Koester & Levine, In press). How- 
ever, two points relevant to the clinical application of 
modeling can be briefly discussed here. 

One way to apply the models developed in this 
research is to generate specific predictions of perfor- 
mance time using the model equations. The validation 
results suggest that Model 1 should be preferred for 
this application over Model 2, since its two-parameter 
structure is much simpler and almost as accurate as 
Model 2. Making performance predictions requires the 
specification of the user parameter values to be used 
in the equations, and as the validation results showed, 
values measured directly from a specific individual 
give notably better results than independent parame- 
ter values. The use of empirically derived user para- 

. meters in the model leads to questions regarding the 
practical application of the model. First, how feasible 
is parameter measurement in real-world settings? 
Fortunately, the individualized approach used in AAC 
and computer access makes it reasonable to think 
that a clinician could measure an individual's para- 
meters as part of a clinical evaluation. Second, since 
the technique used to measure the parameters 
involves measurement of user performance, what is . 
the purpose of subsequent model simulations of that 
same performance? This concern can be addressed 
by considering that the parameters measured are 
more fundamental building blocks of user perfor- 
mance, so they can be used to simulate performance 
in conditions beyond the particular ones from which 
they were derived. The method and application of 
model simulations to address clinical questions about 
performance will be the subject of a subsequent paper 
(Koester & Levine, 1997). 

In addition to specific answers regarding expected 
performance with word prediction, a second and often 
under-appreciated use of modeling is to provide help 
in framing the problem. Modeling provides ''tools for 
thought" (Newell & Card, 1985), alerting clinicians and 
designers to the important factors in determining per- 
formance with word prediction. For example, Equation 
1 shows that there are four primary factors that deter- 
mine performance with word prediction: the average 
number of searches required per character, the key- 
stroke savings, the user's keypress time, and the 
user's list search time. The list search analyses per- 
formed for Model 2 were able to concretely demon- 
strate how factors such as the length of the prediction 
list and the typicajity of the target word can influence 
the user's search time. 

The modeling framework is also a valuable 
research tool that complements empirical methods, 
even when model validation is not the primary 
research goal. The structure provided by the models 
and the strategy assignment supported the measure- 
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ment of individual keypress and list search time dur- 
ing use of word prediction, neither of which has been 
reported previously. 

CONCLUSIONS 

These results support the hypothesis that user per- 
formance with word prediction systems can be suc- 
cessfully modeled using a relatively simple model that 
considers only keypress and list search actions 
(Model 1). The accuracy of this very parsimonious 
model is encouraging, as Model 18 yielded an aver- 
age error of 16% for word entry times and less than 
10% for overall text generation rate. It is probably 
unrealistic to expect model simulations to do much 
better than that. 

The revisions made to the model structure with 
Model 2 illustrate that list search during use of word 
prediction is a complex process influenced by the par- 
ticular conditions of the search. Both serial search 
and anticipation of the list contents significantly 
affected subjects' list search times. While modeling 
list search in more detail raised some interesting 
hypotheses about the list search process, it did not 
greatly improve the accuracy of modeling users' per- 
formance. Model 2 is best suited for addressing spe- 
cific questions regarding list search time, while Model 
1 is more practical for generating quick simulations of 
overall performance. A thorough exploration of how 
these models can be used is presented in a subse- 
quent paper (Koester & Levine, in press). 
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Fax+4640321990 

USSAAC 
d o  James F. Neils 
Conferences lnc. 
516-26 Davis Street 
Suites 21 1-212 
Evanston, IL 60201-4644 USA 
Tel. (708) 869-21 22 
Fax (708) 869-21 61 

ISAAC-IRELAND ISAAC-DANMARK 
C/O Martine Smith C/O Mogens Hygum Jensen 
School of Clinical Speech 8 DLH Esbjerg, Skolebakken 171 
Language Studies OK-6705 Esbjerg 0, Denmark 
Trinity College, 184 Pearse Street Tel. +45 75 14 17 22 
Dublin 2, Ireland Fax t45 75 14 31 68 
Tel. +353 1 702 1496 
Fax +353 1 671 21 52 

ISAAC NETHERLANDS-FLANDERS ISAACGSC 
C/O Margriet Heim d o  Paul Andres 
lnstituut Algemene Taalwetenschap Nordfeld 8 
Spuistraat 210 31 832 Springe-Bennigsen, Germany 
101 2 VT Amsterdam. The NeJherlands Tel. +49/5045/1331 
Tel. +31 20 525 3851 Fax +49/5045/8265 
Fax +31 20 525 3052 

If you live in a country or region where there is not an ISAAC chapter, please contact the ISAAC Secretariat for current application 
form and membership rates. Nancy Chrlstk, Executive Director, ISAAC Secretariat, 49 The Donway West, Sultr 308, Toronto, 
Ontario, Canada M3C 3M9; Tel. 416-385-0351; Fax 416-385-0352, E-mail Isaac-mail@mail.cepp.org. 

ISAAC-UK 
C/O Caroline Gray 
ACE Centre, Onnerod School 
Waynflete Road , 

Headington, Oxford OX3 8DD England 
Tel. +44 1865 63508 
Fa%+441865750188 
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