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Modeling the Speed of Text Entry
with a Word Prediction Interface

Heidi Horstmann Koester and Simon P. Levine

Abstract—This study analyzes user performance of text entry
tasks with word prediction by applying modeling techniques
developed in the field of human-computer interaction. Fourteen
subjects transcribed text with and without a word prediction
feature for seven test sessions. Eight subjects were able-bodied
and used mouthstick typing, while six subjects had high-level
spinal cord injuries and used their usual method of keyboard
access. Use of word prediction decreased text generation rate for
the spinal cord injured subjects and only modestly enhanced it for
the able-bodied subjects. This suggests that the cognitive cost of
using word prediction had a major impact on the performance
of these subjects. Performance was analyzed in more detail by
deriving subjects’ times for keypress and list search actions
during word prediction use. All subjects had slower keypress
times during word prediction use as compared to letters-only
typing, and spinal cord injured subjects had much slower list
search times than able-bodied subjects. These parameter values
were used in a two-parameter model to simulate subjects’ word
entry times during word prediction use, with an average model
error of 167. These simulation results are an encouraging first
step toward demonstrating the ability of analytical models to
represent user performance with word prediction.

1. BACKGROUND

OMPUTER-BASED augmentative and alternative com-

munication (AAC) systems provide people who have
severe disabilities with the opportunity to communicate in-
dependently in the areas of speech, writing, and computer
applications. A major goal in the design and prescription of
these systems is to provide the user with the fastest means of
communication possible. A varicty of techniques designed to
enhance user performance are currently used in AAC syslems,
including word abbreviations [1], 2], message encoding |3],
[4], and word prediction [5], [6]. There continues to be a need
for greater understanding of the efficacy of these systems.

A primary aim in most rate enhancement approaches is to re-
duce the motor requirements placed on the user. This is clearly
an important goal, since the vast majority of users have scvere
physical impairments. However, a frequent consequence of
reducing motor requirements is to increase the cognitive and
perceptual loads on the user [4], [7], [8]. The net balance of this
trade-off determines whether the user’s overall performance
will be enhanced or inhibited with a system [9].
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This paper focuses on user performance with word predic-
tion systems in particular and how it is affected by the trade-off
between decreased motor and increased cognitive foads. Word
prediction systems attempt to predict the word intended by the
user by presenting the user with a set of word choices. Word
prediction choices are typically displayed in a short list and are
refined as the user selects additional letters. Since many words
can be completed by choosing from the list rather than through
letter-by-letter spelling, the number of selections required per
word can be substantially reduced. Keystroke savings provided
by several commercial word prediction systems have been
measured in the range of 37-47% [10], with clinical reports
ranging from 23-58% (5], {11]-[13}.

Keystroke savings represents the extent to which word
prediction reduces the motor requirements on the user relative
to letter-by-letter spelling. This benefit comes at the cost of
additional cognitive and perceptual activities required to use
the system. These include the visual search of the word list
and the subsequent decision about whether the list contains
the desired word. An additional source of cognitive load
may be the processing involved in planning use strategies
(e.g., deciding when to search) and guiding overall activity
{14]-{16].

Evidence that these additional cognitive loads can have
a negative cffect on user performance is shown in Fig. L.
The figure shows the improvements in text generation rate
with word prediction as reported in the literature for 13
individuals, relative to the keystroke savings achicved by these
individuals {S], [F1], [12], (17}, [18]. It also shows what
the rate improvements would be if there were no time cost
due to additional cognitive and perceptual activities [9]. All
but two of these individuals achieved less than this ideal
improvement, which provides indirect yet strong evidence that -
the additional cognitive and perceptual activities reduce the
benefit of decreased motor requirements. More direct evidence
comes from our recent study on able-bodied users of scanning
systems, in which use of word prediction slowed the rate
of selecting items (i.e., letters and/or words) by 30-40%
compared to letters-only typing [17].

In addition to providing evidence of cognitive cost, these
data also show a large diversity in the cffect of word prediction
on text generation rate. This diversity may be partially duc
to differences in methodologics between studies, but it also
suggests that the cffect of word prediction depends on the

P Keystroke saving is measured as 1-(keystrokes required/ characters gen-
erated). Keystrokes are broadly defined to include keypresses in a direct

sclection system, as well as items selected in other ways, such as through
scanning or Morse code.
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Fig. 1. Reported improvements in text generation rate with word prediction
as a function of keystroke savings. Each point corresponds to the performance
of a single individual. The dotted line shows what rate improvement would be
if there were no cognitive time costs associated with use of word prediction.

specific characteristics of the individual user and the context of
use. For some individuals, under some conditions, the benefit
of keystroke savings seems to outweigh the cost of additional
cognitive activities, resulting in a welcome improvement in
overall speed of text generation, while for other individuals,
the opposite is true. A goal of our research is ultimately
to determine the conditions under which word prediction
improves text generation rate and those under which it does
not.

An empirical approach to pursuing this goal involves mea-
suring the performance of a variety of users under a range of
conditions and attempting to deduce the underlying principles
of user performance from the resulting data. There is a great
need for further empirical information gathered under well-
defined conditions, particularly in light of the relatively sparse
and diverse data reported to date, as seen in Fig. 1. However,
a limitation of an empirical focus is that only a small subset
of user-system combinations can be studied, so it is difficult
to extrapolate to conditions that have not been empirically
examined.

One way to move beyond the limitations of a purely
empirical approach is through the development of analytical
models that integrate information about the system and user
to predict the user’s performance [13], [14], [19], [20]. These
build on empirical data and support the simulation of user
performance across a range of conditions. Accurate analytical
models could provide AAC system developers with a means
of evaluating the consequences of design decisions, to support
the development of an optimal design. For clinicians, models
could aid system prescription and configuration by estimating
user performance with a range of candidate systems.

The prognosis for user performance modeling in AAC
is somewhat controversial. Questions exist about whether
accurate models of user performance can be developed, due to
variation in the abilities of the user population and the different
approaches users may take toward a particular system [12].
The potential benefits of the modeling approach have also been
recognized, and several research efforts have been aimed at

quantitative model development [13], [19], [20]-[23]. Many of
the models developed to date evaluate systems based primarily
on motor efficiency [20], [22], [23], so they are not well-suited
to represent systems like word prediction, in which cognition
and perception have an important impact. Models which have
explicitly included cognitive and perceptual processes have
provided important conceptual frameworks, but very little
work has been done to compare their quantitative predictions
to actual user performance [13], [19], [21]. These limitations
in model structure and/or the extent of model validation have
hampered the success of previous efforts, so the question
of whether an accurate model of user performance can be
developed in AAC remains open.

Qutside of AAC, a great deal of research attention has
focused on the development of user interface modeling tech-
niques [15], [16], [24]. The research presented here is based
on one such technique, called the Keystroke Level Model
(KLM) [15]. This technique provides a means of identifying
the cognitive, perceptual, and motor activities that a user
must perform for a particular task. The time required for
executing that task is then predicted by summing the times
for each component activity. In the case of text entry with a
word prediction system, the unit task is the entry of a single
word, accomplished through a series of letter and word list
selections, each of which involves cognitive, perceptual, and
motor component actions.

A primary feature of the KLM is its ability to accurately
account for user performance using only a small number
of parameters. For example, [16] was able to predict the
time to enter spreadsheet commands with a 26% error, using
only two user parameters, one for keypress time and one
for general mental time. The use of the aggregate mental
operator illustrates the emphasis of the model on providing
useful approximations to cognitive costs, rather than precise
psychological models for each cognitive process. It is recog-
nized that this feature is a potential source of model error, but
it is important to determine whether useful accuracy can be
obtained despite the simplifying assumptions used. Knowledge
of the limitations of these assumptions provide guidance for
subsequent revisions of the model if necessary. The flexibility
in the KLM technique, as well as its proven accuracy in
modeling similar tasks, were the reasons for choosing the KLM
as the basis for this work.

II. PURPOSE

This research is part of a long-term program to gain greater
empirical understanding of user performance with AAC sys-
tems and to develop analytical models that can accurately
simulate expected performance. The current study focuses on
word prediction and addresses the following specific issues:

1) Available data on user performance with word prediction.

suggests that the time required for additional cognitive
and perceptual processes involved in the use of word
prediction will at least partially offset the benefit of
decreased motor requirements. This study is intended o
extend the available data base by employing both able-
bodied and physically disabled subjects across a multi-
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session protocol. We hypothesize that text generation
rates for all subjects with word prediction will be lower
than those expected based solely on consideration of
keystroke savings. Further, we propose to examine the
source of the cognitive loads in greater detail than
has been reported previously, through the derivation of
subjects’ list search and keypress parameter times.

2) The potential for analytical user performance models in
AAC has not yet been realized, and it is not clear if
this is due to limitations in previous modeling work or
to more serious theoretical problems. A main goal of
this study is to address this controversy. We hypothesize
that a two-parameter model of user performance can be
developed using KLM techniques which will simulate
word entry time with an accuracy at least as good as

that reported for other applications of the KLM (below .

25-30% error). In this initial effort, the two parameter
values for keypress and list search times will be derived
for individual subjects based on their performance data.

3) Within the general issue of modeling feasibility, a main
question is how well a model can accommodate differ-
ences between individual users or groups of users. This
study addresses part of this broad issue by comparing
model accuracy for able-bodied subjects to a group
of spinal cord injured subjects. We hypothesize that
model simulations will be equally accurate for able-
bodied and physically disabled subjects. Any differences
in observed performance between these two groups will
be accounted for in the mode! by using different user
parameter values within the same two-parameter model
structure [25]. We expect the major difference in user
parameter values to be in those that represent motor
activities, rather than cognitive activities, since these
subjects will have only physical disabilities.

4) A fourth goal is to explore the potential of using an
analytic model to identify optimal strategies for systcm
use. As a first step toward this long-term goal, we hy-
pothesize that the two-parameter model will be equally
successful in simulating performance under different
strategies of use. Additionally, we expect user parameter
values to be independent of strategy used, even if overall
performance is not, since the parameters are intended
to represent fairly low-level building blocks of overall
performance.

5) Finally, the study addresses the accuracy of model
simulations across a range of usage conditions, with
the hypothesis that model accuracy will not change as
subjects gain experience with word prediction during the
experiment or as the keystroke savings of the system is
varied. As in #3 above, any differences in performance
with practice will be accounted for by different user
parameter values within the same two-parameter model
structure.

To test these hypotheses, an experiment was conducted to
measure user performance with and without word prediction,
as a source of model validation data as well as a contribution
to empirical understanding. User performance was modeled
using KLLM techniques with parameter values derived from

Enthusiasm for the job is a good quality.
Some people do their w,_

Fig. 2. Schematic representation of the Letters+WP system display. The
six-word list is fixed in the upper left corner, with the transcribed text
displayed below the list. A sample of actual text transcribed by subjects is
shown, and the list contents are those that follow selection of the letter w.

the subject data. Actual subject performance was then com-
pared to modeled performance. The modeling results reported
here represent one step toward a thorough assessment of the
model’s accuracy, as a necessary prerequisite to applying the
model in clinical and design situations.

ItI. METHODS

A. Subjects

Fourteen subjects were employed. All subjects shared the
following characteristics: at least some post-secondary edu-
cation; frequent computer use and high familiarity with the
standard keyboard layout; no significant prior experience with
word prediction; and no reported cognitive, perceptual, or
linguistic disabilities. Eight of the subjects were able-bodied,
and the remaining six had spinal cord injuries at levels ranging
from C4-C6.

B. Interche.s

The two interfaces used in the study were developed by
the investigators specifically for research purposes, to provide
sufficient control over the means of data collection. Both
interfaces used direct selection on the standard computer
keyboard as the basic input method. Able-bodied subjects
used mouthstick typing to access the keyboard, while subjects
with spinal cord injuries used their usual method of keyboard
access, which was mouthstick typing for two of the subjects
and hand splint typing for the other four. The first interface,
referred to as “Letters-only,” simply involved letter-by-letter
spelling. The second interface, referred to as “Letters+WP,”
used single letter entry augmented by a word prediction
feature. A six-word prediction list with a fixed word order
was used and presented vertically in the top left corner of the
screen, as shown in Fig. 2.

C. Experimental Design

The protocol involved a three-session training phase and
a seven-session testing phase. The testing phase employed
an alternating treatments design, in which subjects’ text tran-
scription performance with and without word prediction was
recorded in each test session. The keystroke savings provided
by word prediction was fixed across Sessions 1-4 and varied in
Sessions 5-7 (as discussed in more detail below). Each subject
was randomly assigned to one of two different strategies with
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TABLE 1
THE Four SuBJECT GROUPS
SCI No SCI Yes
AB1 scn
Strategy 1 (n=4) (n=3)
AB2 SCI2
Strategy 2 (n=4) (n=3)

which they were to use the word prediction feature. These
strategies are discussed in more detail below. The assignment
of subjects to the four groups is shown in Table .

D. Procedures

Subjects were tested in individual sessions which were
conducted in laboratory space for eleven subjects and at
subjects’ homes for the three spinal cord injured subjects who
had difficulty arranging travel to the university. Subjects took
an average of 21 days to complete the protocol.

Training began with two sessions of practice using the
Letters-only system. Each able-bodied subject was provided
with a 17" anodized aluminum mouthstick to use for the
duration of the study,? while the spinal cord injured subjects
used their own mouthstick or typing splints. For able-bodied
subjects, the keyboard was placed at standard desk height and
tilted at an angle of 45 degrees relative to the desk surface. For
spinal cord injured subjects, the keyboard was placed to match
their normal set-up; all used a flat keyboard. In the first training
session, subjects were instructed in the transcription task and
proper use of the mouthstick was demonstrated for able-bodied
subjects. Subjects were given the goal of typing as quickly as
possible, while keeping mistakes to a minimum. They then
practiced for six blocks of text (four sentences each) over two
sessions. After each block of text, subjects were asked to rate
the difficulty of the task on a continuous scale ranging from
“Very Easy” to “Very Difficult.”

The third training session introduced subjects to the word
prediction feature and their assigned strategy for its use. The
rules for the two strategies were defined as follows:

Strategy 1. Search the list before every selection.

Strategy 2. Choose the first two letters of a word without
searching the list, then search the list before
each subsequent selection.

For both strategies, an exception io these rules occurred
when the word list was empty, in which case a list search
was not required. These strategies were chosen to be realistic
enough to represent at least a subset of actual user approaches,
simple enough to be learned in a single training session, and
distinct enough to yield measurable performance differences.
Subjects were asked to follow the rules as closely as possible.
All subjects practiced using their strategy for four blocks of
text (4 sentences each), which was sufficient for each to use
the strategy correctly without prompting.

Each of the seven test sessions involved four sentences of
warm-up using word prediction, an eight-sentence test with

2AdLib Incorporated, 5142 Bolsa Avenue, Suite 106, Huntington Beach,
CA 92649.

Keystroke Savings (X)
8 8 8 8 8
1

—6— S1
e 82

[=]
b
b

Sesaion
Fig. 3. Keystroke savings provided by the Letters4-WP system at cach
session for each strategy.

word prediction, then a two-sentence typing test. Text blocks
were drawn from published typing tests, matched with respect
to syllable intensity, average word length, and percent of words
that occur with high frequency [26). The texts were carefully
revised to provide the same level of keystroke savings across
Sessions 1-4 and systematic variation of keystroke savings
in Sessions 5-7. Fig. 3 shows the specific keystroke savings
across sessions for each strategy of word prediction use. (Note
that the text transcribed was identical for both strategies; the
difference in keystroke savings was caused only by differences
in the strategies.)

Sentences were presented singly on index cards. Subjects
were given twenty seconds to read the sentence before an
audio cue signalled them to begin transcription. Errors could
be corrected by selecting the “Backspace™ key as well as a
special key for correcting word list selections. The sentence
card remained in view for reference throughout transcription.

E. Data Collection

All items selected by subjects were timed and stored by
the software in real time. Entries were also encoded to store
various information such as the type of selection made (i.e., a
single letter or a word list selection) and the number of words
in the list when the item was selected. The raw data was used
to produce an entry log, in which each line shows the selected
item, its various characteristics, and the time at which it was
selected.

All sessions were videotaped, with the camera focused
on the subject’s face, close enough to determine easily the
direction of eye gaze. Keypresses were recorded on the video
using a mirror, placed behind the subject to reflect a view of
the keyboard into the camera, and a speech synthesizer, which
echoed the selected item onto the audio track (without being
audible to the subject). The camera’s clock was synchronized
with that of the computer, so the times on the vidcotape
matched those on the entry log.

An experimenter was present throughout each session to
record observations of subject behavior. In addition to the
difficulty rating described above, subject comments were so-
licited after each session. Subjects were also given immediate
feedback on their text generation rate with each system.
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Fig. 4. Flow chart representing activities required during use of Strategy 1
with the Letters+WP system.

F. Data Filtering

The raw data were filtered to remove events judged to
be in any of the following three categories. The first was a
general category of text errors and error corrections, including
typographical as well as transcription errors. The second
included all words that were not entered in a manner consistent
with the assigned strategy. Events in these two categories
were identified by comparing the subject’s generated text to
an error-free template. The final category consisted of “card
reads,” or times when the subject referred back to the text
card during transcription, as identified through analysis of the
videotape records. Carriage returns and periods were filtered
out as well.

The process of identifying and coding events to be filtered
was performed by the first author and a trained assistant.
Interrater reliability was measured at 99.4%, based on a sample
of four sessions analyzed by both raters. A point-to-point
reliability measure was used, in which the total number of
agreements between raters is divided by the total number of
agreements and disagreements [27].

G. Dependent Measures of User Performance

Text generation rates for the Letters+WP and Letters-only
systems were measured for each subject at each test session
by dividing the number of characters generated during the test
by the total time required to generate those characters. Items
that were filtered out were not counted either in the number
of characters generated nor in the total time.

H. Measurement of User Parameters:

The first step in measuring user parameters was to determine
the parameters most important to task execution time. This was
done by analyzing the task of entering words for each of the
word prediction strategies. As an example, the flow chart of
hypothesized user activity for Strategy 1 is shown in Fig. 4.
The major activities for both strategies are keypresses (to select
a letter or a word) and list searches, so these were chosen as the
two user model parameters. While additional parameters could

30 T T
R 20 ~
3
7
= 10} i -
@ Strat
Error
0 PR @ Rosad
Leotterg+WP  Letters-only
System

Fig. 5. Amount of data filtered for each system as a percent of total number
of items selected, averaged across subjects and sessions. Also shown is the
relative contribution of the three filtering categories: “Strat™ for items not
consistent with the assigned strategy, “Error” for erroneous selections, and
“Read” for items following subjects’ referral to the text card.

have been defined, only two were used, in order to test the
accuracy of a more parsimonious model. A consequence of this
choice is that although each parameter primarily represents the
activity for which it is named, it may include other components
as well. For example, the keypress parameter reflects the motor
component of selecting an item, but it may also incorporate
more subtle activities such as verifying accuracy, retrieving
from memory the next word to be typed, or retrieving the rule
that guides the next action to be made. Similarly, the list search
parameter may also include these extra activities, in addition to
the list search itself. Fortunately, such integration is consistent
with the spirit of previous KLM studies, in which a single
mental time parameter has often been used for all cognitive
actions [15].

Durations for the component actions of list search and
keypress while using Letters+ WP were derived from the
filtered data for each subject. The technique used for this
followed the subtractive methods of {15], [16]. Based on the
strategy used with Letters+WP, each selection was labelled
according to whether it involved a keypress preceded by a list
search or a keypress with no list search. For example, when
using Strategy 2, the first two letters of every word involved no
list searches, so they were labelled as keypress-only. The third
letter, however, did include a list search, so it was labelled as
a list search-plus-keypress. The keypress time (#x) during use
of Letters+WP was then calculated by averaging the times for
all keypress-only selections in the session. The list search time
(ts) was derived by subtracting one {; from the time recorded
for each list search-plus-keypress selection, then averaging the
remaining times. In all, 98 pairs of parameter values were
derived in this way (14 subjects x 7 sessions).

I. Model Simulations

Using these parameter values, simulations of the time to
enter each word during use of Letters+WP were performed as
follows. A model value for each item selection was calculated
based on whether that selection involved a keypress only
(£x) or a list search-plus-keypress (f, + t). The values were
summed for each item in a word to yield an entry time for
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Fig. 6. Average text generation rates achieved by each subject group for each session. (a) shows rates achieved with the Letters-only system, with spinal cord
injured subjects significantly faster than able-bodied subjects. (b) shows rates for the Letters+WP system, with no significant differences between subject groups.

that word. This process was performed for each word entered
by each subject in every test session, using the parameter
values determined for that subject-session combination. Model
error was measured for each subject-session combination by
averaging the absolute value of percent error across all words
in that session.

J. Statistical Analyses

Statistical differences in all dependent measures across sub-
ject groups, systems, and test sessions were determined using a
repeated measures ANOVA technique. The four experimental
factors were strategy and presence/absence of spinal cord
injury (SCI) as the between-subjects factors, with system and
session as the repeated measures (within-subjects) factors.
Statistical significance for each effect was judged at a fam-
ilywise p-value of 0.05, using the Bonferroni procedure to

“divide by the number of effects examined within the test [28].
For example, a test analyzing all four experimental factors
examines fourteen different effects (four main effects and
ten interactions), so the critical p-value used for any one of
these fourteen would be 0.05/14 = 0.003. The corresponding
critical values for three- and two-factor tests were 0.007 and
0.017, respectively. Additionally, all p-values examined and
reported were those adjusted based on the Greenhouse-Geisser
epsilon as an additional precaution against Type I errors (i.e.,
judging as significant differences that are truly nonsignificant)
[28].

IV. RESULTS

A. Filtering

The percentage of data removed from analysis was 16.3%
of all Letters+WP selections and 7.3% of all Letters-only
selections, averaged across all subjects and sessions. Fig. §
shows the relative contribution of the three filtering categories
to each of these percentages. A four-factor ANOVA showed
that the amount of data filiered was independent of subject
SCI (p = 0.314), strategy used (p = 0.702), or session (p =
0.383). Significantly more data was filtered from Letters+WP

selections than from Letters-only selections (p < 0.0005).
because subjects referred to the text card more often with
Letters+WP (p < 0.0005) and because Letters+WP had the
additional category of strategy compliance.

B. Simple Empirical Results

A full analysis of all empirical results is beyond the scope
and specific goals of this paper, but the major results are
presented to provide a context for the parameter derivation
and model simulation results.?

Fig. 6(a) shows the average text generation rate for the
Letters-only system for the four subject groups. Subjects with
spinal cord injuries typed an average of 65.8% faster than those
without (significant at p = 0.005). That they were faster is
not surprising given their prior experience with their keyboard
access method, while the able-bodied subjects were new to
mouthstick typing. The large magnitude of the difference is
somewhat surprising, however; the subjects with SCI were
clearly quite skilled at Letters-only typing.

Fig. 6(b) shows the average text generation rate with
Letters+WP for all four subject groups. The consistency
between the groups is striking, and a three-factor ANOVA
on strategy, SCI, and session confirmed that there were
no differences between any of the groups due to strategy
(p = 0.677) or SCI (p = 0.519). Session was a significant
effect (p < 0.0005) because the higher keystroke savings
provided in Session 5 increased Letters+WP performance for
all subjects, while the lower keystroke savings in Session 7
decreased it. Over the first four sessions, in which keystroke
savings was fixed, there was also a significant (p < 0.0005),
but moderate (13%) increase in text generation rate with
Letters+WP.

The difference between spinal cord injured and able-bodied
subjects re-emerged when the net change in text generation rate
using Letters+ WP relative to Letters-only was examined (Fig.
7). Analysis of rate improvements using a three-factor ANOVA

YWhile all reported analyses used filtered data, text gencration rates based
on unfiltered data were also examined, and it was found that filtering Jid not
change the pattern or significance of the empirical results.
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Fig. 7. Average improvement in text generation rate during use of
Letiers+WP system, relative to Letters-only. A comparison to the shape of
Fig. 3 illustrates a generally positive relationship between keystroke savings
and rate improvement. However, rate improvement was significantly lower
than would have been expected based solely on consideration of keystroke
savings. *Jote also that use of Letters+WP had a strongly negative impact
on rate for spinal cord injured subjects.

showed a strong main effect of subject SCI (p < 0.0005),
so data from able-bodied and spinal cord injured subjects
were analyzed separately. For spinal cord injured subjects,
use of word prediction had a strongly negative impact on text
generation rate; on average, rate decreased by 40.7% when
word prediction was used. For the able-bodied subjects, text
generation rate was unaffected by the use of word prediction,
except during Session 5, which had the highest level of
keystroke savings and improved rate by 31.9%, and Session
7, which had the lowest keystroke savings and inhibited rate
by 14.0%. Strategy of using Letters+WP had no effect on
rate improvement for the able-bodied subjects, while disabled
subjects who used Strategy 2 had a significant advantage over
those who used Strategy | (p = 0.014).

Actual rate improvements were also compared to those that
would have been expected based solely on consideration of
keystroke savings, in order 1o dircctly address Hypothesis
#1. Actual improvement averaged 70 percentage points below
ideal improvement (significant at p < 0.0005), This large gap
indicates the impact of the cognitive loads experienced by
these subjects during use of word prediction, relative to the
ideal situation in which cognitive loads have no effect.

C. User Parameter Values

Fig. 8 shows the average keypress times during use of
Letters+WP at each session for each of the four subject
groups. A three-factor ANOVA on strategy, SCI, and session
factors showed that there were no differences between the
groups, either on the basis of Letters+WP strategy or spinal
cord injury. The one significant difference that did emerge
was a main elfect of session (p = 0.001), as keypress time
improved an average of 17.7% from Session | to Session 7.

An unexpected result was that keypress times during use of
Letters+WP were significantly slower than during Letters-only
typing (main cffect of system significant at p < 0.0005, in a
four-factor ANOVA). Fig. 9 shows keypress times with and
without word prediction for able-bodied and disabled subjects.
(The times are collapsed across strategy of Letters+WP use for
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Fig. 8. Average keypress times during use of Letters+WP for each subject
group, showing no significant differences between the groups. The small
improvement seen with practice was statistically significant.

greater clarity, since it had no significant effect (p = 0.632).)
Across both subject groups, keypress times with Letters+WP
averaged 23% (170 msec) slower than during Letters-only
typing. Visual analysis of the figure suggests that the keypress
slow-down was more pronounced for subjects with spinal
cord injuries than those without; quantitatively, the amount of
slow-down was 48% (270 msec) for SCI subjects, and 10.8%
(94 msec) for able-bodied subjects. Statistically, however, the
interaction between system and SCI was not quite low enough
to be judged significant (p = 0.009 vs. criterion of 0.003).

Fig. 10 shows the average list search times at each session
for each of the four subject groups. As with keypress time,
strategy of use did not significantly affect list search time
(p = 0.058 in a three-factor ANOVA). Spinal cord injury,
however, did have a significant effect (p < 0.0005), as the list
search times of subjects with SCI were an average of 96.4'/.
(560 msec) slower than the able-bodied subjects. Because of
this large effect, within-subjects effects for these two groups
were examined scparately, using two-factor ANOVA tests.
For able-bodicd subjects, session had a significant main effect
(p < 0.0005), with list search time improving by an average of
27.3% (180 msec) from Session 1 to Session 7. For spinal cord
injured subjects, however, average list search time improved
only 2.7% over these sessions, which was not significant
(p = 0.395). So in addition to having slower list search times
overall, subjects with spinal cord injuries did not improve their
search time with practice.

D. Model Simulations

Average model error for each session and subject group
is shown in Fig. 11. As discussed above, the model error was
measured for each subject by calculating the percent difference
between actual and modeled time for each word in a session.
then averaging their absolute values. The errors shown in Fig.
I't are averages for the subjects in each group.

As can be scen from the figure. and confirmed statistically
through a three-factor ANOVA, model accuracy was not
significantly different for the two strategies of Letters+WP use
(p = 0.949) or for any of the seven test sessions (p = 0.257).
Because neither strategy nor session had a significant effect,
a clearer view of model error was achieved by pooling across
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Fxg 9. A\{erage keypress times during use of Letters+WP compared to those during use of Letters-only for (a) able-bodied subjects and (b) spinal cord
injured subjects, collapsed across strategy of Letters+WP use. For all subjects, keypress time was significantly slower during use of Letters+WP. and

this effect was more pronounced for spinal cord injured subjects.
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Fig. 10. Average list search times during use of Letters+ WP for each subject
group, Spinal cord injured subjects had significantly slower list search times
than able-bodied subjects.
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Fig. 11. Average error of the two-parameter model for each subject
group. Model accuracy was not significantly different for different sessions
or Letters+ WP strategies. Accuracy appears to be somewhat better for
able-bodied subjects, although the difference was not statistically significant.

these factors to obtain an average error of 13.3% for able-
bodied subjects and 20.7% for spinal cord injured subjects.
While that difference approaches statistical significance, at
p = 0.019, it does not meet the criterion p-value of 0.007.

In summary, the average model error was 16.5%, with a 95%.
confidence interval of {13.2, 19.8], and was independent of
strategy of Letters+WP use, test session, and subject SCI.

V. DISCUSSION

A. General Empirical Results

The text generation results provide additional support for
the hypothesis that increased cognitive and perceptual loads
have a major impact on performance with word prediction.
For all subjects, any improvements in rate with word prediction
relative to letters-only typing were much less than would be
expected based on keystroke savings alone. Additionally, a
statistically significant improvement was seen only for the
able-bodied subjects, and only for the test session that provided
the highest keystroke savings. In all other sessions, able-
bodied performance with word prediction was not significantly
faster than without, while for spinal cord injured subjects,
performance with Letters+WP was significantly worse than
for Letters-only typing. Finally, the result that subjects re-
ferred to the text card significantly more often during use of
Letters+WP is also consistent with the hypothesis that word
prediction demands a greater cognitive load from its users.

In attributing the additional selection time in word predic-
tion to additional cognitive and perceptual loads, the implicit
assumption is that the motor components of the transcription
task were the same with and without word prediction. It should
be acknowledged, however, that part of the extra selection time
may be due to differences in motor activities. For example,
searching the word prediction list requires the user to shift
eye gaze and occasionally head position. The time required
for the motor component of searching may partially depend on
the level of the user’s physical disability and whether typing
was performed with hand splints or mouthstick, but for the
spinal cord injured subjects of this study, at least, there was
no association between search times and physical method of
keyboard access. In addition, the motor aspect of pressing
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the keys during use of word prediction may be affected by
the need to select from both the number and alphabetic keys.
This could be a significant effect for individuals with highly
variable motor control ability. However, based on observations
of the ability and skill of these subjects, there was no obvious
reason to believe that in this study the difficulty of pressing the
keys was different for number and alphabetic keys. A more
thorough analysis of these motor factors would be a good
focus for future work.

Certainly features of the experimental conditions limit the
generalizability of these results. Subjects were constrained in
what strategy they were to use with Letters+WP, the text
they were to generate, and the number of sessions in which
they used the systems. The limited time course is perhaps
the most important of these factors, since none of the subjects
could be considered true word prediction experts by the end of
the experiment. Additionally, the spinal cord injured subjects
represent only one sub-group of the actual user population,
which includes individuals with more variable motor skills as
well as those with cognitive impairments. Future work should
focus on the performance of users with different abilities and
levels of expertise than the subjects studied here, to either
corroborate these results or reveal conditions under which
word prediction does provide a large improvement in rate.

Hopefully it is clear that our position is not that keystroke
savings is irrelevant to text generation rate performance. It
is an important factor, but the net effect on performance
can only be determined by considering keystroke savings
in combination with the cognitive cost of using the system.
For example, use of Strategy 2 in this study provided lower
keystroke savings but yielded performance at least as good as
Strategy 1, because the cognitive cost of Strategy 2 was lower,
due to the fewer list searches required. Another important
example of this phenomenon can be seen in comparing the
text generation rate results of the spinal cord injured and
able-bodied subjects. The keystroke savings achieved by both
groups was the same, but the spinal cord injured subjccts
did much worse with word prediction, relative to letters-only
typing, than did the able-bodied subjects. This suggests that
the cost of word prediction was higher for the spinal cord
injured subjects. Possible reasons for this are explored below.

B. User Parameter Results

An important benefit of the modeling process is that by
partitioning a user’s performance into component actions,
it is possible to analyze that performance in greater detail.
Examination of the values derived for subjects’ keypress and
list search times shows a similar pattern to the overall text
generation rate results. The cognitive cost of using word
prediction can be seen in both able-bodied and spinal cord
injured subjects, as all subjects spent at least several hundred
milliseconds searching the word lists, and all spent longer on
keypresses during word prediction use as compared to letter-
by-letter spelling. While these effects existed for all subjects,
they were much larger for spinal cord injured subjects. Their
list search time was almost twice as long on average as that
for able-bodied subjects, and their keypress time slowed down

by almost 50% during use of word prediction.

We did not expect such a large disparity in word prediction’s
effect on spinal cord injured as compared to able-bodied
subjects. A major source of the disparity may be the difference
in the groups’ expertise in the Letters-only condition. All sub-
jects had roughly equal familiarity with the keyboard layout.
However, the able-bodied subjects had no prior experience in
mouthstick typing, while the spinal cord injured subjects had
exlensive experience with their particular method of keyboard
access and had highly developed skills in letter-by-letter typing
using that method. When the SCI subjects were asked to use
word prediction, additional cognitive effort may have been
required to stop themselves from typing the word as they
normally would, above and beyond the loads associated with
word prediction itself. The able-bodied subjects would not
incur these additional loads, since they did not have highly
developed motor patterns for letter-by-letter mouthstick typing.
Indirect support for this hypothesis is provided by several
occasions in which spinal cord injured subjects typed an entire
word letter-by-letter, forgetting to attend to the word list.?

A general explanation for this effect is that it may be due to
negative transfer in switching between systems, in which the
skills learned for one system interfere with developing new
skills necessary for a second system. This has been observed
when people trained on one form of text editor are forced to
switch to another one [29]. However, the effect in that case
was relatively mild and decreased rapidly with practice, while
in this study the effect was large and durable, at least for the
spinal cord injured subjects.

One hypothesis for why the negative transfer was so strong
in the spinal cord injured subjects is that they may have
experienced a qualitative shift in their general mode of infor-
mation processing in moving from the highly practiced skill of
typing to the new task of using word prediction. It is possible
that for at least some of these subjects, single letter typing
was largely an automatic process, requiring a minimum of
cognitive effort, not unlike ten-finger touch typing. In contrast,
use of word prediction may have required a mode known as
control processing, which is slower and more effortful than
automatic processing [30]. Able-bodied subjects would not
have experienced this shift, since the relative novelty of both
mouthstick typing and word prediction would suggest that
control processing would be employed in both cases.

A natural extension to this hypothesis is to consider whether,
or under what conditions, use of word prediction could be-
come an automatic process. While it has been suggested that
cognitive load may decrease as user familiarity and expertise
with the system grows {31], there is very little information
on the extent to which this actually occurs. Over the seven
test sessions in this study, we observed at most only modest
decreases in cognitive load. For example, the slow-down
in keypress time during use of word prediction decreased
somewhat in the early sessions but then was stable for later
sessions (see Fig. 9). Additionally, while list search time did
improve by almost 30% for the able-bodied subjects, it didn’t
improve at all for the spinal cord injured subjects, even though

4 Such words would be removed from data analysis in the filtering protocol,
since they would be judged in noncompliance with the assigned strategy.
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the word lists were fixed throughout the experiment (see Fig.
10).

It is certainly probable that more practice would bring
greater decrements in cognitive load. However, [30] suggests
that performance on a visual search task of the sort required
in word prediction is unlikely to become truly automatic even
with extended practice, because the words in the list serve as
both targets and distractors. On the other hand, even if visual
search performance did not improve, a user may improve in
the ability to anticipate the list contents, i.e, in deciding when
to search the list. It is possible, therefore, that the key to
automaticity lies in developing anticipation skills, rather than
visual search skills. In this study, the strategy rules limited the
amount of anticipation that could be employed by subjects,
so these data cannot directly address that issue. Clearly, more
empirical work is necessary to address the complex and critical
question of automaticity.

C. Model Accuracy

An average error of 16% in modeling word entry times
with the Letters+WP system is encouraging and is lower
than errors found in other applications of the KLM technique.
Model accuracy was no different for different strategies of use,
levels of subject experience, or keystroke savings provided
by the system. Accuracy appeared to be somewhat greater
for able-bodied subjects as compared to spinal cord injured
subjects (13% vs. 20% error), but this difference was not
statistically significant. These results support our view that user
performance with word prediction systems can be successfully
modeled using a relatively simple model that considers only
keypress and list search actions. Limitations to the particular
methodology used here and the KLLM technique in general are
considered below to provide a balanced interpretation to this
result.

Due to the simulation method used, the model accuracy
obtained should be considered the best accuracy possible for
word eatry times with a model structure based on keypress
and list search parameters. It is important to recall that the
parameter values were derived directly from the performance
data. While this is a standard method used in KLM studies,
it does yield better accuracy than simulations based on in-
dependent parameter values (e.g., taken from another study,
or measured from a separate subject group). Additionally,
simulations for this study used paramecters specific to each
subject, which would generally yield better accuracy than
using values averaged across subjects. This is particularly true
in this case, given the important differences seen in parameter
values between able-bodied and spinal cord injured subjects,
as discussed above. In this initial study, our goal was to
determing if even the best casc accuracy was acceptable, so we
used the best available estimates for parameter values. Future
work is planned to assess the effect of different sources for
parameter values, which will be critical in determining the
ultimate usefulness of the modeling technique.

A general issue in any model of this kind is that model
accuracy depends on the level of detail examined in the
performance data. It would be possible, for example, to use
the same model structure to simulate the time required to enter

all the text in a given session, simply by adding up all the
model times for the individual words in that text. This whole-
session simulation would necessarily have greater accuracy
than the model times for individual words because positive
and negative errors for particular words would offset each
other in the summing process.> The reverse holds true when
examining the model’s accuracy at predicting the time for each
item selection in a given word. Word entry times were used
as the focus here because they provide a more stringent test
of model accuracy than overall session times and they form a
coherent unit task within the overall task of text entry.

A second general issue is that although (wo user parameters
were sufficient to successfully model performance time, they
may not exclusively represent only the two processes of a pure
keypress and list search. An inexact match between model
parameters and underlying processes is not unexpected in
a KLM-based model, given its emphasis on useful approx-
imations. The empirical data suggest that such a mismatch
may exist in this case, and in particular that there may be
additional cognitive processes executed by the spinal cord
injured individuals. The slow-down in keypress time seen in all
subjects during use of word prediction suggests that there may
be some general cognitive overhead that is not required during
letters-only typing. That this slow-down was more pronounced
in spinal cord injured subjects may mean that the cognitive
overhead was greater for them, or it may be related to some
specific process such as verification which the able-bodied
subjects did not perform. For the list search parameter, the
large difference between the spinal cord injured and able-
bodied subjects suggests that the underlying processes may be
somewhat different for these two groups. Certainly all subjects
executed some process to identify whether the target word
was in the list, but in addition to this, the time measured as
“list search time” could include such activities as retrieval of
the strategy rules, verification of selection accuracy, and/or
movements of the eyes and head, as has been discussed.
Future work is necessary to gain more understanding of what
these processes are and the conditions under which they are
executed.

VI. CONCLUSION

Under the experimental conditions studied here. the cogni-
tive cost of using word prediction largely overwhelmed the
benelit provided by keystroke savings. Spinal cord injured
subjects appeared to incur higher cognitive costs than able-
bodied subjects. possibly due to their prior expertise in typing
without word prediction.

A two-parameter model, based on a linear combination of
keypress and list search actions, was shown o account for
subjects’ word entry times with an average error of 16'4. The
accuracy of model simulations was not significantly different
for subjects with and without physical disabilities and for
two different strategies of word prediction use. However, user
parameter values, particularly the list search parameter. were

51n fact, with the simulation methods uscd here. in which model parameters
were derived directly from the perforimance data. the crror across an cnure
session would be precisely zero.
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different for the able-bodied and spinal cord injured subject
groups, with spinal cord injured subjects having much slower
list search times. Resolving the source of this difference will
be important in enabling the application of this modeling
technique under conditions in which parameters cannot be
derived.
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